NorscopolamineCAS# 4684-28-0 |
Quality Control & MSDS
Number of papers citing our products
Chemical structure
3D structure
Cas No. | 4684-28-0 | SDF | Download SDF |
PubChem ID | 92989 | Appearance | White powder |
Formula | C16H19NO4 | M.Wt | 289.3 |
Type of Compound | Alkaloids | Storage | Desiccate at -20°C |
Synonyms | Norhyoscine | ||
Solubility | Soluble in acetone, chloroform and DMSO | ||
Chemical Name | [(1S,2S,4R,5R)-3-oxa-9-azatricyclo[3.3.1.02,4]nonan-7-yl] (2S)-3-hydroxy-2-phenylpropanoate | ||
SMILES | C1C(CC2C3C(C1N2)O3)OC(=O)C(CO)C4=CC=CC=C4 | ||
Standard InChIKey | MOYZEMOPQDTDHA-LACSLYJWSA-N | ||
Standard InChI | InChI=1S/C16H19NO4/c18-8-11(9-4-2-1-3-5-9)16(19)20-10-6-12-14-15(21-14)13(7-10)17-12/h1-5,10-15,17-18H,6-8H2/t10?,11-,12-,13+,14-,15+/m1/s1 | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
Structure Identification | Green Chemistry, 2012, 14(4):1189-1195.One-pot oxidative N-demethylation of tropane alkaloids with hydrogen peroxide and a FeIII-TAML catalyst.[Reference: WebLink]
|
Norscopolamine Dilution Calculator
Norscopolamine Molarity Calculator
1 mg | 5 mg | 10 mg | 20 mg | 25 mg | |
1 mM | 3.4566 mL | 17.2831 mL | 34.5662 mL | 69.1324 mL | 86.4155 mL |
5 mM | 0.6913 mL | 3.4566 mL | 6.9132 mL | 13.8265 mL | 17.2831 mL |
10 mM | 0.3457 mL | 1.7283 mL | 3.4566 mL | 6.9132 mL | 8.6415 mL |
50 mM | 0.0691 mL | 0.3457 mL | 0.6913 mL | 1.3826 mL | 1.7283 mL |
100 mM | 0.0346 mL | 0.1728 mL | 0.3457 mL | 0.6913 mL | 0.8642 mL |
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations. |
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
- Orphenadrine Citrate
Catalog No.:BCC4572
CAS No.:4682-36-4
- Drimenol
Catalog No.:BCN7224
CAS No.:468-68-8
- Mesembrenone
Catalog No.:BCN3753
CAS No.:468-54-2
- Lupulon
Catalog No.:BCC8204
CAS No.:468-28-0
- Colupulone
Catalog No.:BCN8097
CAS No.:468-27-9
- Lu AE58054
Catalog No.:BCC1707
CAS No.:467459-31-0
- Lu AE58054 Hydrochloride
Catalog No.:BCC1708
CAS No.:467458-02-2
- Nootkatone
Catalog No.:BCN5517
CAS No.:4674-50-4
- Diphenyleneiodonium chloride
Catalog No.:BCC6670
CAS No.:4673-26-1
- 17-DMAG (Alvespimycin) HCl
Catalog No.:BCC1175
CAS No.:467214-21-7
- Alvespimycin
Catalog No.:BCC1346
CAS No.:467214-20-6
- Theaflavin
Catalog No.:BCN5419
CAS No.:4670-05-7
- Picrinine
Catalog No.:BCN5518
CAS No.:4684-32-6
- Dihydrocorynantheine
Catalog No.:BCN3747
CAS No.:4684-43-9
- 3-Benzofurancarboxaldehyde
Catalog No.:BCC8622
CAS No.:4687-25-6
- Cimilactone A
Catalog No.:BCN7948
CAS No.:468733-06-4
- BMS-536924
Catalog No.:BCC1177
CAS No.:468740-43-4
- Hamamelitannin
Catalog No.:BCC8182
CAS No.:469-32-9
- Cycloeucalenol
Catalog No.:BCN5519
CAS No.:469-39-6
- Jervine
Catalog No.:BCN2975
CAS No.:469-59-0
- 5'-IMPdisodium salt
Catalog No.:BCN8175
CAS No.:4691-65-0
- Carbenicillin
Catalog No.:BCC5192
CAS No.:4697-36-3
- Uncarine D
Catalog No.:BCC8262
CAS No.:4697-68-1
- Isoalantolactone
Catalog No.:BCN4955
CAS No.:470-17-7
Simple interface for scanning chemical compounds on developed thin layer chromatography plates using electrospray ionization mass spectrometry.[Pubmed:30612639]
Anal Chim Acta. 2019 Feb 21;1049:1-9.
A simple and cheap design for interfacing thin layer chromatography (TLC) with electrospray ionization mass spectrometry (ESI/MS) was developed to scan and characterize compounds on TLC plate. The developed TLC plate was rapidly and easily modified into two sawtooth-edged pieces that were positioned on an XYZ stage so that one of the triangular tips was pointed toward the MS inlet. A drop of methanol and high DC voltage was applied at the tip to induce ESI. After the analytes in the first tip were analyzed, the TLC piece was moved so that the second triangular tip was pointed toward the MS inlet for analysis. The process was repeated until all the triangular tips on the piece were analyzed. In this manner, the analytes, no matter visible or non-visible bands, were scanned and characterized. Since a 4.8cm long TLC track were cut to 32 triangles on two sawtooth pieces for analysis, the spatial resolution of using the sawtooth TLC-ESI/MS for analysis is 1.5 mm/band. A mixture of dye standards and Datura metel flower extract was analyzed to demonstrate the capability of sawtooth TLC-ESI/MS on scanning and characterizing chemical compounds on the TLC plates. The limits of detection of the dye standards were between 0.25 and 2.5 ng/band. TLC bands containing alkaloids such as scopolamine and Norscopolamine from the Datura metel flower extract were not visualized on the developed TLC track, but were successfully detected at different triangular tips using sawtooth TLC-ESI/MS. Based on these results, the Rf values of scopolamine and Norscopolamine were determined.
Analysis of scopolamine and its eighteen metabolites in rat urine by liquid chromatography-tandem mass spectrometry.[Pubmed:18970269]
Talanta. 2005 Oct 31;67(5):984-91.
A rapid and sensitive method is described for the determination of scopolamine and its metabolites in rat urine by combining liquid chromatography and tandem mass spectrometry (LC-MS/MS). Various extraction techniques (free fraction, acid hydrolyses and enzyme hydrolyses) and their comparison were carried out for investigation of the metabolism of scopolamine. After extraction procedure, the pretreated samples were injected into a reversed-phase C18 column with mobile phase of methanol/ ammonium acetate (2mM, adjusted to pH 3.5 with formic acid) (70:30, v/v) and detected by an on-line MS/MS system. Identification and structural elucidation of the metabolites were performed by comparing their changes in molecular masses (DeltaM), retention-times and full scan MS(n) spectra with those of the parent drug. The results revealed that at least 18 metabolites (norscopine, scopine, tropic acid, apoNorscopolamine, aposcopolamine, Norscopolamine, hydroxyscopolamine, hydroxyscopolamine N-oxide, p-hydroxy-m-methoxyscopolamine, trihydroxyscopolamine, dihydroxy-methoxyscopolamine, hydroxyl-dimethoxyscopolamine, glucuronide conjugates and sulfate conjugates of Norscopolamine, hydroxyscopolamine and the parent drug) and the parent drug existed in urine after ingesting 55mg/kg scopolamine to healthy rats. Hydroxyscopolamine, p-hydroxy-m-methoxyscopolamine and the parent drug were detected in rat urine for up 106h after ingestion of scopolamine.
Liquid chromatography-electrospray ionization ion trap mass spectrometry for analysis of in vivo and in vitro metabolites of scopolamine in rats.[Pubmed:18218192]
J Chromatogr Sci. 2008 Jan;46(1):74-80.
In vivo and in vitro metabolism of scopolamine is investigated using a highly specific and sensitive liquid chromatography-mass spectrometry (LC-MSn) method. Feces, urine, and plasma samples are collected individually after ingestion of 55 mg/kg scopolamine by healthy rats. Rat feces and urine samples are cleaned up by a liquid-liquid extraction and a solid-phase extraction procedure (C18 cartridges), respectively. Methanol is added to rat plasma samples to precipitate plasma proteins. Scopolamine is incubated with homogenized liver and intestinal flora of rats in vitro, respectively. The metabolites in the incubating solution are extracted with ethyl acetate. Then these pretreated samples are injected into a reversed-phase C18 column with mobile phase of methanol-ammonium acetate (2 mM, adjusted to pH 3.5 with formic acid) (70:30, v/v) and detected by an on-line MSn system. Identification and structural elucidation of the metabolites are performed by comparing their changes in molecular masses (DeltaM), retention-times and full scan MSn spectra with those of the parent drug. The results reveal that at least 8 metabolites (norscopine, scopine, tropic acid, apoNorscopolamine, aposcopolamine, Norscopolamine, hydroxyscopolamine, and hydroxyscopolamine N-oxide) and the parent drug exist in feces after administering 55 mg/kg scopolamine to healthy rats. Three new metabolites (tetrahydroxyscopolamine, trihydroxy-methoxyscopolamine, and dihydroxy-dimethoxyscopolamine) are identified in rat urine. Seven metabolites (norscopine, scopine, tropic acid, apoNorscopolamine, aposcopolamine, Norscopolamine, and hydroxyscopolamine) and the parent drug are detected in rat plasma. Only 1 hydrolyzed metabolite (scopine) is found in the rat intestinal flora incubation mixture, and 2 metabolites (aposcopolamine and Norscopolamine) are identified in the homogenized liver incubation mixture.
Metabolism in vivo of the tropane alkaloid, scopolamine, in several mammalian species.[Pubmed:1796606]
Xenobiotica. 1991 Oct;21(10):1289-300.
1. In vivo metabolism of scopolamine was studied in rats, mice, guinea pigs and rabbits. The structures of eight urinary metabolites including unchanged drug were elucidated by mass and nuclear magnetic resonance spectrometry. Determination of these metabolites was achieved by a g.l.c. method using a semi-capillary column. 2. The major metabolites in rats were the three phenolic metabolites, p-hydroxy-, m-hydroxy- and p-hydroxy-m-methoxy-scopolamine. 3. Significant intra-species difference of the metabolism was observed in rabbits. Tropic acid was the major metabolite in two rabbits out of three, while the other rabbit excreted mainly unchanged scopolamine, accompanied by five metabolites. Tropic acid was also the major metabolite in guinea pigs, but was of minor importance in mice. 4. The dehydrated metabolites, aposcopolamine and apoNorscopolamine, were abundantly excreted in guinea pigs, moderately in mice, and least in rabbits and rats. 5. Excretion of glucuronide conjugates of scopolamine and Norscopolamine were high in mice compared with other species. On the other hand, phenolic metabolites in rat urine; and tropic acid in rabbit and guinea pig urine, were excreted as the free forms. 6. These results indicate that scopolamine metabolism is highly species-specific.
Routine synthesis of N-[11C-methyl]scopolamine by phosphite mediated reductive methylation with [11C]formaldehyde.[Pubmed:2840412]
Int J Rad Appl Instrum A. 1988;39(5):373-9.
A synthesis of [11C]scopolamine capable of clinical delivery of this agent in high specific activity is described. The precursor [11C]formaldehyde was produced by catalytic oxidation of [11C]CH3OH over metallic silver and was used to N-11C-methylate Norscopolamine using aqueous neutral potassium phosphite as the reducing agent. The labeling reaction was complete after 5 min at 75-80 degrees C and the [11C]scopolamine (99% radiochemical purity) was isolated by preparative HPLC. Total synthesis time is less than 45 min. Decay corrected radiochemical yields from [11C]CO2 are presently 20-43%.