Home >> Research Area >>Natural Products>>Triterpenoids>> Notoginsenoside Fe

Notoginsenoside Fe

CAS# 88105-29-7

Notoginsenoside Fe

2D Structure

Catalog No. BCN3852----Order now to get a substantial discount!

Product Name & Size Price Stock
Notoginsenoside Fe: 5mg $35 In Stock
Notoginsenoside Fe: 10mg Please Inquire In Stock
Notoginsenoside Fe: 20mg Please Inquire Please Inquire
Notoginsenoside Fe: 50mg Please Inquire Please Inquire
Notoginsenoside Fe: 100mg Please Inquire Please Inquire
Notoginsenoside Fe: 200mg Please Inquire Please Inquire
Notoginsenoside Fe: 500mg Please Inquire Please Inquire
Notoginsenoside Fe: 1000mg Please Inquire Please Inquire

Quality Control of Notoginsenoside Fe

3D structure

Package In Stock

Notoginsenoside Fe

Number of papers citing our products

Chemical Properties of Notoginsenoside Fe

Cas No. 88105-29-7 SDF Download SDF
PubChem ID 73157876 Appearance Powder
Formula C47H80O17 M.Wt 917.12
Type of Compound Triterpenoids Storage Desiccate at -20°C
Synonyms Notoginseng triterpenes; Ginsenoside Mb
Solubility Soluble in Chloroform,Dichloromethane,Ethyl Acetate,DMSO,Acetone,etc.
Chemical Name 2-[[17-[2-[6-[[3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxymethyl]-3,4,5-trihydroxyoxan-2-yl]oxy-6-methylhept-5-en-2-yl]-12-hydroxy-4,4,8,10,14-pentamethyl-2,3,5,6,7,9,11,12,13,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-yl]oxy]-6-(hydroxymethyl)oxane-3,4,5-triol
SMILES CC(=CCCC(C)(C1CCC2(C1C(CC3C2(CCC4C3(CCC(C4(C)C)OC5C(C(C(C(O5)CO)O)O)O)C)C)O)C)OC6C(C(C(C(O6)COC7C(C(C(O7)CO)O)O)O)O)O)C
Standard InChIKey MYBAONSAUGZRAX-UHFFFAOYSA-N
Standard InChI InChI=1S/C47H80O17/c1-22(2)10-9-14-47(8,64-42-39(58)36(55)34(53)27(62-42)21-59-40-37(56)33(52)26(20-49)60-40)23-11-16-46(7)31(23)24(50)18-29-44(5)15-13-30(43(3,4)28(44)12-17-45(29,46)6)63-41-38(57)35(54)32(51)25(19-48)61-41/h10,23-42,48-58H,9,11-21H2,1-8H3
General tips For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months.
We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months.
Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it.
About Packaging 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial.
2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial.
3. Try to avoid loss or contamination during the experiment.
Shipping Condition Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request.

Source of Notoginsenoside Fe

The roots of Panax notoginseng

Biological Activity of Notoginsenoside Fe

DescriptionNotoginsenoside Fe can induce gap junction-mediated intercellular communication (GJIC) reductions; and gap junctions have been shown or are believed to be involved in the pathogenesis of many inherited and acquired human diseases, agents that regulate the GJIC function may facilitate prevention and treatment of GJIC-involved diseases.
TargetsIL Receptor | PKC

Protocol of Notoginsenoside Fe

Kinase Assay

Effects of ginsenosides from Panax ginseng on cell-to-cell communication function mediated by gap junctions.[Pubmed: 11488454]

Planta Med., 2001, 67(5):417-22.

Gap junctions have been shown or are believed to be involved in the pathogenesis of many inherited and acquired human diseases. Agents that regulate the gap junction-mediated intercellular communication (GJIC) function may facilitate prevention and treatment of GJIC-involved diseases.
METHODS AND RESULTS:
In the present study we examined the effects of 27 ginsenosides isolated from Panax ginseng on GJIC. The results show that compounds 1 (oleanolic acid), 2 (ginsenoside-R0), 3 (ginsenoside-Rb1), 5 (ginsenoside-Rb2), 7 (ginsenoside-Rd), 8 (ginsenoside-Rg3), 12 (panaxadial), 13 (notoginsenoside-R4), 17 [ginsenoside-Rg2 (20S)], 18 (ginsenoside-Rf), and 26 (ginsenoside-F3) did not obviously affect GJIC, whereas compounds 4 (ginsenoside-Rc), 6 (ginsenoside-Rb3), 9 (ginsenoside-Rd2), 10 (Notoginsenoside Fe), 11 (ginsenoside-Rh2),14 (ginsenoside-Ra1), 15 (ginsenoside-Re), 16 [ginsenoside-Rg2 (20R)], 19 (ginsenoside-Ia), 20 [ginsenoside-Rh1 (20S)], 21 [ginsenoside-Rh1 (20R)], 22 (ginsenoside-F1), 23 (protopanaxatriol), 24 (panaxatriol), 25 (ginsenoside-Rg1), and 27 (chikusetsaponin-L8) induced GJIC reductions at various degrees. Compounds 2, 7, and 8 protected against the tyrosine phosphatase inhibitor vanadate-induced GJIC reduction, while compounds 1, 5, 7, and 17 inhibited the cytokine interleukin 1 alpha (IL-1alpha)-induced reduction in GJIC. Nevertheless, no compounds protected against the protein kinase C (PKC) activator 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced GJIC inhibition. On the other hand, GJIC reductions induced by compounds 6, 9,10, 20, 21, 22, 24, and 25 were inhibited by the tyrosine kinase (TK) inhibitor genistein, while GJIC reductions induced by compounds 6, 9, 14, 16, 19, 21, and 24 were attenuated in the presence of the PKC inhibitor calphostin C. However, GJIC reductions induced by compounds 4, 23, and 27 were not inhibited either by genistein or by calphostin C.
CONCLUSIONS:
These data indicate that various mechanisms are responsible for effects of ginsenosides on GJIC.

Notoginsenoside Fe Dilution Calculator

Concentration (start)
x
Volume (start)
=
Concentration (final)
x
Volume (final)
 
 
 
C1
V1
C2
V2

calculate

Notoginsenoside Fe Molarity Calculator

Mass
=
Concentration
x
Volume
x
MW*
 
 
 
g/mol

calculate

Preparing Stock Solutions of Notoginsenoside Fe

1 mg 5 mg 10 mg 20 mg 25 mg
1 mM 1.0904 mL 5.4518 mL 10.9037 mL 21.8074 mL 27.2592 mL
5 mM 0.2181 mL 1.0904 mL 2.1807 mL 4.3615 mL 5.4518 mL
10 mM 0.109 mL 0.5452 mL 1.0904 mL 2.1807 mL 2.7259 mL
50 mM 0.0218 mL 0.109 mL 0.2181 mL 0.4361 mL 0.5452 mL
100 mM 0.0109 mL 0.0545 mL 0.109 mL 0.2181 mL 0.2726 mL
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations.

Organizitions Citing Our Products recently

 
 
 

Calcutta University

University of Minnesota

University of Maryland School of Medicine

University of Illinois at Chicago

The Ohio State University

University of Zurich

Harvard University

Colorado State University

Auburn University

Yale University

Worcester Polytechnic Institute

Washington State University

Stanford University

University of Leipzig

Universidade da Beira Interior

The Institute of Cancer Research

Heidelberg University

University of Amsterdam

University of Auckland
TsingHua University
TsingHua University
The University of Michigan
The University of Michigan
Miami University
Miami University
DRURY University
DRURY University
Jilin University
Jilin University
Fudan University
Fudan University
Wuhan University
Wuhan University
Sun Yat-sen University
Sun Yat-sen University
Universite de Paris
Universite de Paris
Deemed University
Deemed University
Auckland University
Auckland University
The University of Tokyo
The University of Tokyo
Korea University
Korea University

Background on Notoginsenoside Fe

Notoginsenoside Fe is a natural compound isolated from Panax japlcus var.

References:
[1]. Li S, et al. Development of a method to screen and isolate potential xanthine oxidase inhibitors from Panax japlcus var via ultrafiltration liquid chromatography combined with counter-current chromatography. Talanta. 2015 Mar;134:665-73. [2]. He R, et al. Chemical constituents of leaves of Panax japonicus var. major. Zhongguo Zhong Yao Za Zhi. 2014 May;39(9):1635-8.

Featured Products
New Products
 

References on Notoginsenoside Fe

Effects of ginsenosides from Panax ginseng on cell-to-cell communication function mediated by gap junctions.[Pubmed:11488454]

Planta Med. 2001 Jul;67(5):417-22.

Gap junctions have been shown or are believed to be involved in the pathogenesis of many inherited and acquired human diseases. Agents that regulate the gap junction-mediated intercellular communication (GJIC) function may facilitate prevention and treatment of GJIC-involved diseases. In the present study we examined the effects of 27 ginsenosides isolated from Panax ginseng on GJIC. The results show that compounds 1 (oleanolic acid), 2 (ginsenoside-R0), 3 (ginsenoside-Rb1), 5 (ginsenoside-Rb2), 7 (ginsenoside-Rd), 8 (ginsenoside-Rg3), 12 (panaxadial), 13 (notoginsenoside-R4), 17 [ginsenoside-Rg2 (20S)], 18 (ginsenoside-Rf), and 26 (ginsenoside-F3) did not obviously affect GJIC, whereas compounds 4 (ginsenoside-Rc), 6 (ginsenoside-Rb3), 9 (ginsenoside-Rd2), 10 (notoginsenoside-Fe), 11 (ginsenoside-Rh2),14 (ginsenoside-Ra1), 15 (ginsenoside-Re), 16 [ginsenoside-Rg2 (20R)], 19 (ginsenoside-Ia), 20 [ginsenoside-Rh1 (20S)], 21 [ginsenoside-Rh1 (20R)], 22 (ginsenoside-F1), 23 (protopanaxatriol), 24 (panaxatriol), 25 (ginsenoside-Rg1), and 27 (chikusetsaponin-L8) induced GJIC reductions at various degrees. Compounds 2, 7, and 8 protected against the tyrosine phosphatase inhibitor vanadate-induced GJIC reduction, while compounds 1, 5, 7, and 17 inhibited the cytokine interleukin 1 alpha (IL-1alpha)-induced reduction in GJIC. Nevertheless, no compounds protected against the protein kinase C (PKC) activator 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced GJIC inhibition. On the other hand, GJIC reductions induced by compounds 6, 9,10, 20, 21, 22, 24, and 25 were inhibited by the tyrosine kinase (TK) inhibitor genistein, while GJIC reductions induced by compounds 6, 9, 14, 16, 19, 21, and 24 were attenuated in the presence of the PKC inhibitor calphostin C. However, GJIC reductions induced by compounds 4, 23, and 27 were not inhibited either by genistein or by calphostin C. These data indicate that various mechanisms are responsible for effects of ginsenosides on GJIC.

Description

Notoginsenoside Fe is a natural compound isolated from Panax japlcus var.

Keywords:

Notoginsenoside Fe,88105-29-7,Notoginseng triterpenes; Ginsenoside Mb,Natural Products, buy Notoginsenoside Fe , Notoginsenoside Fe supplier , purchase Notoginsenoside Fe , Notoginsenoside Fe cost , Notoginsenoside Fe manufacturer , order Notoginsenoside Fe , high purity Notoginsenoside Fe

Online Inquiry for:

      Fill out the information below

      • Size:Qty: - +

      * Required Fields

                                      Result: