Parstatin (mouse)Peptide cleaved from PAR1 upon receptor activation CAS# 1065756-01-5 |
2D Structure
- Amyloid β-Protein (1-15)
Catalog No.:BCC1003
CAS No.:183745-81-5
- Beta-Amyloid (1-11)
Catalog No.:BCC1002
CAS No.:190436-05-6
Quality Control & MSDS
3D structure
Package In Stock
Number of papers citing our products
Cas No. | 1065756-01-5 | SDF | Download SDF |
PubChem ID | 131954573 | Appearance | Powder |
Formula | C189H326N58O57S3 | M.Wt | 4419.19 |
Type of Compound | N/A | Storage | Desiccate at -20°C |
Solubility | Soluble to 1 mg/ml in water | ||
Sequence | MGPRRLLIVALGLSLCGPLLSSRVPMSQPE | ||
Chemical Name | 4-[[1-[5-amino-2-[[2-[[2-[[1-[2-[[2-[[2-[[2-[[2-[[2-[[1-[2-[[2-[[2-[[2-[[2-[[2-[[2-[2-[[2-[[2-[[2-[[2-[[2-[[2-[[1-[2-[(2-amino-4-methylsulfanylbutanoyl)amino]acetyl]pyrrolidine-2-carbonyl]amino]-5-carbamimidamidopentanoyl]amino]-5-carbamimidamidopentanoyl]amino]-4-methylpentanoyl]amino]-4-methylpentanoyl]amino]-3-methylpentanoyl]amino]-3-methylbutanoyl]amino]propanoylamino]-4-methylpentanoyl]amino]acetyl]amino]-4-methylpentanoyl]amino]-3-hydroxypropanoyl]amino]-4-methylpentanoyl]amino]-3-sulfanylpropanoyl]amino]acetyl]pyrrolidine-2-carbonyl]amino]-4-methylpentanoyl]amino]-4-methylpentanoyl]amino]-3-hydroxypropanoyl]amino]-3-hydroxypropanoyl]amino]-5-carbamimidamidopentanoyl]amino]-3-methylbutanoyl]pyrrolidine-2-carbonyl]amino]-4-methylsulfanylbutanoyl]amino]-3-hydroxypropanoyl]amino]-5-oxopentanoyl]pyrrolidine-2-carbonyl]amino]-5-[[1-[[1-[[1-[[1-[[1-[[1-[[1-[[1-[[4-amino-1-[2-[(4-carbamimidamido-1-carboxybutyl)carbamoyl]pyrrolidin-1-yl]-1,4-dioxobutan-2-yl]amino]-3-methyl-1-oxobutan-2-yl]amino]-3-hydroxy-1-oxobutan-2-yl]amino]-1-oxopropan-2-yl]amino]-3-carboxy-1-oxopropan-2-yl]amino]-3-hydroxy-1-oxobutan-2-yl]amino]-5-carbamimidamido-1-oxopentan-2-yl]amino]-4-carboxy-1-oxobutan-2-yl]amino]-3-hydroxy-1-oxopropan-2-yl]amino]-5-oxopentanoic acid | ||
SMILES | CCC(C)C(C(=O)NC(C(C)C)C(=O)NC(C)C(=O)NC(CC(C)C)C(=O)NCC(=O)NC(CC(C)C)C(=O)NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CS)C(=O)NCC(=O)N1CCCC1C(=O)NC(CC(C)C)C(=O)NC(CC(C)C)C(=O)NC(CO)C(=O)NC(CO)C(=O)NC(CCCNC(=N)N)C(=O)NC(C(C)C)C(=O)N2CCCC2C(=O)NC(CCSC)C(=O)NC(CO)C(=O)NC(CCC(=O)N)C(=O)N3CCCC3C(=O)NC(CCC(=O)O)C(=O)NC(CO)C(=O)NC(CCC(=O)O)C(=O)NC(CCCNC(=N)N)C(=O)NC(C(C)O)C(=O)NC(CC(=O)O)C(=O)NC(C)C(=O)NC(C(C)O)C(=O)NC(C(C)C)C(=O)NC(CC(=O)N)C(=O)N4CCCC4C(=O)NC(CCCNC(=N)N)C(=O)O)NC(=O)C(CC(C)C)NC(=O)C(CC(C)C)NC(=O)C(CCCNC(=N)N)NC(=O)C(CCCNC(=N)N)NC(=O)C5CCCN5C(=O)CNC(=O)C(CCSC)N | ||
Standard InChIKey | SVAINNLHALEEHP-UHFFFAOYSA-N | ||
Standard InChI | InChI=1S/C189H326N58O57S3/c1-29-98(22)144(240-165(284)119(76-94(14)15)226-161(280)115(72-90(6)7)224-153(272)104(40-30-58-203-185(193)194)214-152(271)105(41-31-59-204-186(195)196)218-171(290)128-45-35-63-243(128)136(258)80-209-149(268)103(190)56-68-306-27)178(297)237-141(95(16)17)176(295)212-99(23)147(266)223-113(70-88(2)3)150(269)208-79-135(257)213-114(71-89(4)5)160(279)233-125(85-251)169(288)227-117(74-92(10)11)164(283)236-127(87-305)151(270)210-81-137(259)244-64-36-46-129(244)172(291)228-118(75-93(12)13)162(281)225-116(73-91(8)9)163(282)234-126(86-252)170(289)235-123(83-249)166(285)216-106(42-32-60-205-187(197)198)157(276)239-143(97(20)21)183(302)247-67-39-49-132(247)174(293)220-110(57-69-307-28)156(275)232-124(84-250)168(287)221-111(50-53-133(191)255)181(300)245-65-37-47-130(245)173(292)219-109(52-55-139(262)263)155(274)231-122(82-248)167(286)217-108(51-54-138(260)261)154(273)215-107(43-33-61-206-188(199)200)158(277)242-145(101(25)253)179(298)229-120(78-140(264)265)159(278)211-100(24)148(267)241-146(102(26)254)180(299)238-142(96(18)19)177(296)230-121(77-134(192)256)182(301)246-66-38-48-131(246)175(294)222-112(184(303)304)44-34-62-207-189(201)202/h88-132,141-146,248-254,305H,29-87,190H2,1-28H3,(H2,191,255)(H2,192,256)(H,208,269)(H,209,268)(H,210,270)(H,211,278)(H,212,295)(H,213,257)(H,214,271)(H,215,273)(H,216,285)(H,217,286)(H,218,290)(H,219,292)(H,220,293)(H,221,287)(H,222,294)(H,223,266)(H,224,272)(H,225,281)(H,226,280)(H,227,288)(H,228,291)(H,229,298)(H,230,296)(H,231,274)(H,232,275)(H,233,279)(H,234,282)(H,235,289)(H,236,283)(H,237,297)(H,238,299)(H,239,276)(H,240,284)(H,241,267)(H,242,277)(H,260,261)(H,262,263)(H,264,265)(H,303,304)(H4,193,194,203)(H4,195,196,204)(H4,197,198,205)(H4,199,200,206)(H4,201,202,207) | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
Description | Cell-permeable peptide cleaved from protease-activated receptor 1 (PAR1) upon receptor activation. Attenuates endothelial cell migration and proliferation (IC50 ~ 20 μM), and induces cell cycle arrest. Promotes activation of caspase-3 and exhibits pro-apoptotic activity in vitro. Inhibits angiogenesis and exhibits cardioprotective activity in vivo. |
Parstatin (mouse) Dilution Calculator
Parstatin (mouse) Molarity Calculator
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
- Parstatin (human)
Catalog No.:BCC6041
CAS No.:1065755-99-8
- 7-Amino-4-methylcoumarin-3-acetic acid
Catalog No.:BCN2562
CAS No.:106562-32-7
- SMND-309
Catalog No.:BCC1956
CAS No.:1065559-56-9
- Dafadine-A
Catalog No.:BCC5406
CAS No.:1065506-69-5
- Ganodermanontriol
Catalog No.:BCN5872
CAS No.:106518-63-2
- Ganoderiol A
Catalog No.:BCN8158
CAS No.:106518-61-0
- Boldenone cyclopentanepropionate
Catalog No.:BCC8894
CAS No.:106505-90-2
- Boc-D-Phenylalaninol
Catalog No.:BCC2714
CAS No.:106454-69-7
- Korepimedoside A
Catalog No.:BCN7887
CAS No.:106441-31-0
- Acid Black 1
Catalog No.:BCC8806
CAS No.:1064-48-8
- Deoxymorellin
Catalog No.:BCN3067
CAS No.:1064-34-2
- Boc-D-Valinol
Catalog No.:BCC2692
CAS No.:106391-87-1
- Hederacolchiside A1
Catalog No.:BCN6553
CAS No.:106577-39-3
- 3,10-Dihydroxy-5,11-dielmenthadiene-4,9-dione
Catalog No.:BCN1633
CAS No.:106623-23-8
- Qingyangshengenin A
Catalog No.:BCN8126
CAS No.:106644-33-1
- Trachelosiaside
Catalog No.:BCN7743
CAS No.:106647-12-5
- Matairesinol 4'-O-beta-gentiobioside
Catalog No.:BCN2848
CAS No.:106647-14-7
- Boc-D-Lys-OH
Catalog No.:BCC3420
CAS No.:106719-44-2
- Olprinone
Catalog No.:BCC1820
CAS No.:106730-54-5
- GYY 4137 morpholine salt
Catalog No.:BCC7739
CAS No.:106740-09-4
- 24-Deacetylalisol O
Catalog No.:BCN3365
CAS No.:1067510-31-9
- Otophylloside B
Catalog No.:BCN7267
CAS No.:106758-54-7
- Diethyl Acetamidomalonate
Catalog No.:BCC2841
CAS No.:1068-90-2
- BIBP 3226 trifluoroacetate
Catalog No.:BCC7456
CAS No.:1068148-47-9
Parstatin: a cryptic peptide involved in cardioprotection after ischaemia and reperfusion injury.[Pubmed:19380418]
Cardiovasc Res. 2009 Jul 15;83(2):325-34.
AIMS: Thrombin activates protease-activated receptor 1 by proteolytic cleavage of the N-terminus. Although much research has focused on the activated receptor, little is known about the 41-amino acid N-terminal peptide (parstatin). We hypothesized that parstatin would protect the heart against ischaemia-reperfusion injury. METHODS AND RESULTS: We assessed the protective role of parstatin in an in vivo and in vitro rat model of myocardial ischaemia-reperfusion injury. Parstatin treatment before, during, and after ischaemia decreased infarct size by 26%, 23%, and 18%, respectively, in an in vivo model of ischaemia-reperfusion injury. Parstatin treatment immediately before ischaemia decreased infarct size by 65% and increased recovery in ventricular function by 23% in an in vitro model. We then assessed whether parstatin induced cardioprotection by activation of a Gi-protein-dependent pathway. Gi-protein inactivation by pertussis toxin completely abolished the cardioprotective effects. The cardioprotective effects were also abolished by inhibition of nitric oxide synthase (NOS), extracellular signal-regulated kinases 1/2 (ERK1/2), p38 mitogen-activated protein kinase (p38 MAPK), and K(ATP) channels in vitro. Furthermore, parstatin increased coronary flow and decreased perfusion pressure in the isolated heart. The vasodilatory properties of parstatin were confirmed in rat coronary arterioles. CONCLUSION: A single treatment of parstatin administered prior to ischaemia confers immediate cardioprotection by recruiting the Gi-protein activation pathway including p38 MAPK, ERK1/2, NOS, and K(ATP) channels. Parstatin exerts effects on both the cardiomyocytes and the coronary circulation to induce cardioprotection. This suggests a potential therapeutic role of parstatin in the treatment of cardiac injury resulting from ischaemia and reperfusion.
Parstatin, the cleaved peptide on proteinase-activated receptor 1 activation, is a potent inhibitor of angiogenesis.[Pubmed:18988770]
J Pharmacol Exp Ther. 2009 Feb;328(2):378-89.
The proteolytic activation by thrombin of the proteinase-activated receptor 1 unveils the tethered peptide ligand and cleaves a 41-amino acid peptide. In this report, we show that this peptide, which we have designated as "parstatin," is a potent inhibitor of angiogenesis. Synthesized parstatin suppressed both the basic angiogenesis and that stimulated by basic fibroblast growth factor and vascular endothelial growth factor in the chick embryo model in vivo and in the rat aortic ring assay. Parstatin also abrogated endothelial cell migration and capillary-like network formation on the Matrigel and fibrin angiogenesis models in vitro. Treatment of endothelial cells with parstatin resulted in inhibition of cell growth by inhibiting the phosphorylation of extracellular signal-regulated kinases in a specific and reversible fashion and by promoting cell cycle arrest and apoptosis through a mechanism involving activation of caspases. We have shown that parstatin acts as a cell-penetrating peptide, exerting its biological effects intracellularly. The uptake into cells and the inhibitory activity were dependent on parstatin hydrophobic region. These results support the notion that parstatin may represent an important negative regulator of angiogenesis with possible therapeutic applications.