Prosapogenin DCAS# 103629-72-7 |
- Prosaikogenin A
Catalog No.:BCX1520
CAS No.:99365-21-6
Quality Control & MSDS
Number of papers citing our products
Chemical structure
3D structure
Cas No. | 103629-72-7 | SDF | Download SDF |
PubChem ID | 156599143.0 | Appearance | Powder |
Formula | C36H58O8 | M.Wt | 618.84 |
Type of Compound | N/A | Storage | Desiccate at -20°C |
Solubility | Soluble in Chloroform,Dichloromethane,Ethyl Acetate,DMSO,Acetone,etc. | ||
Chemical Name | (2R,3R,4S,5R,6R)-2-[[(3R,4S,4aR,6aR,6bS,8S,8aS,14aR,14bS)-8-hydroxy-4,8a-bis(hydroxymethyl)-4,6a,6b,11,11,14b-hexamethyl-1,2,3,4a,5,6,7,8,9,10,12,14a-dodecahydropicen-3-yl]oxy]-6-methyloxane-3,4,5-triol | ||
SMILES | CC1C(C(C(C(O1)OC2CCC3(C(C2(C)CO)CCC4(C3C=CC5=C6CC(CCC6(C(CC54C)O)CO)(C)C)C)C)O)O)O | ||
Standard InChIKey | UAUUFLADFXKYAU-HMXSDMDBSA-N | ||
Standard InChI | InChI=1S/C36H58O8/c1-20-27(40)28(41)29(42)30(43-20)44-26-11-12-32(4)23(33(26,5)18-37)10-13-34(6)24(32)9-8-21-22-16-31(2,3)14-15-36(22,19-38)25(39)17-35(21,34)7/h8-9,20,23-30,37-42H,10-19H2,1-7H3/t20-,23-,24-,25+,26-,27+,28+,29-,30+,32+,33-,34-,35-,36-/m1/s1 | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
Prosapogenin D Dilution Calculator
Prosapogenin D Molarity Calculator
1 mg | 5 mg | 10 mg | 20 mg | 25 mg | |
1 mM | 1.6159 mL | 8.0796 mL | 16.1593 mL | 32.3185 mL | 40.3982 mL |
5 mM | 0.3232 mL | 1.6159 mL | 3.2319 mL | 6.4637 mL | 8.0796 mL |
10 mM | 0.1616 mL | 0.808 mL | 1.6159 mL | 3.2319 mL | 4.0398 mL |
50 mM | 0.0323 mL | 0.1616 mL | 0.3232 mL | 0.6464 mL | 0.808 mL |
100 mM | 0.0162 mL | 0.0808 mL | 0.1616 mL | 0.3232 mL | 0.404 mL |
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations. |
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
- Oleuropeinic acid
Catalog No.:BCX0761
CAS No.:96382-90-0
- Mogroside VI B
Catalog No.:BCX0760
CAS No.:2149606-17-5
- Pulchinenoside E4
Catalog No.:BCX0759
CAS No.:1415553-83-1
- Mogroside VI A
Catalog No.:BCX0758
CAS No.:2146088-13-1
- Anemarrhenasaponin A2
Catalog No.:BCX0757
CAS No.:117210-12-5
- Ergothioneine
Catalog No.:BCX0756
CAS No.:497-30-3
- Dihydroferulic acid
Catalog No.:BCX0755
CAS No.:1135-23-5
- luteolin-7-O-gentiobiside
Catalog No.:BCX0754
CAS No.:70855-41-3
- Kuwanon T
Catalog No.:BCX0753
CAS No.:100187-66-4
- Epimedin I
Catalog No.:BCX0752
CAS No.:205445-00-7
- Cyaonoside A
Catalog No.:BCX0751
CAS No.:110081-91-9
- Epipinoresinol-4-O-glucopyranoside
Catalog No.:BCX0750
CAS No.:24404-49-7
- 3,4'-Dihydroxyflavone
Catalog No.:BCX0763
CAS No.:14919-49-4
- Cis-Ligupurpuroside B
Catalog No.:BCX0764
CAS No.:350588-96-4
- 6-Methylflavone
Catalog No.:BCX0765
CAS No.:29976-75-8
- Methyl Vanillate
Catalog No.:BCX0766
CAS No.:3943-74-6
- L-Amygdalin
Catalog No.:BCX0767
CAS No.:29883-16-7
- 2α,6β,23-trihydroxyl oleanolic acid
Catalog No.:BCX0768
CAS No.:564-13-6
- Hirudonucleodisulfide B
Catalog No.:BCX0769
CAS No.:1072789-38-8
- Hederoside D2
Catalog No.:BCX0770
CAS No.:20853-58-1
- (Z)-9-Nonadecene
Catalog No.:BCX0771
CAS No.:51865-02-2
- 2-Hydroxycinnamicaldehyde
Catalog No.:BCX0772
CAS No.:3541-42-2
- Nardoguaianone K
Catalog No.:BCX0773
CAS No.:443128-65-2
- 2,3-dihydroxypropyl 9-octadecenoate
Catalog No.:BCX0774
CAS No.:251983-54-7
Revealing Molecular Mechanisms of the Bioactive Saponins from Edible Root of Platycodon grandiflorum in Combating Obesity.[Pubmed:38674532]
Plants (Basel). 2024 Apr 17;13(8):1123.
Obesity has emerged as a significant health concern, as it is a disease linked to metabolic disorders in the body and is characterized by the excessive accumulation of lipids. As a plant-derived food, Platycodon grandiflorum (PG) was reported by many studies, indicating that the saponins from PG can improve obesity effectively. However, the anti-obesity saponins from PG and its anti-obesity mechanisms have not been fully identified. This study identified the active saponins and their molecular targets for treating obesity. The TCMSP database was used to obtain information on 18 saponins in PG. The anti-obesity target of the PG saponins was 115 targets and 44 core targets. GO and KEGG analyses using 44 core anti-obesity genes and targets of PG-active saponins screened from GeneCards, OMIM, Drugbank, and DisGeNet showed that the PI3K-Akt pathway, the JAK-STAT pathway, and the MAPK pathway were the major pathways involved in the anti-obesity effects of PG saponins. BIOVIA Discovery Studio Visualizer and AutoDock Vina were used to perform molecular docking and process the molecular docking results. The molecular docking results showed that the active saponins of PG could bind to the major therapeutic obesity targets to play an obesity-inhibitory role. The results of this study laid the foundation for further research on the anti-obesity saponins in PG and their anti-obesity mechanism and provided a new direction for the development of functional plant-derived food. This research studied the molecular mechanism of PG saponins combating obesity through various signaling pathways, and Prosapogenin D can be used to develop as a new potential anti-obesity drug.
Anti-inflammatory activity of prosapogenin methyl ester of platycodin D via nuclear factor-kappaB pathway inhibition.[Pubmed:18981583]
Biol Pharm Bull. 2008 Nov;31(11):2114-20.
Platycodin D (PD) isolated from Platycodi Radix has been reported to have anti-inflammatory and anti-tumor activities. In this study, we have investigated anti-inflammatory activities of Prosapogenin D (PrsD) and Prosapogenin D methyl ester (PrsDMe) of PD. The results indicated that PrsDMe concentration-dependently inhibited lipopolysaccharide (LPS)-induced nitric oxide (NO) and prostaglandin E2 (PGE2) production, however, PrsD did not inhibit NO production in LPS-induced macrophages. Furthermore, PrsDMe inhibited the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) without appreciable cytotoxic effects. In the transfectant RAW 264.7 cells, PrsDMe was observed to reduce the level of nuclear factor-kappaB (NF-kappaB) activity. PrsDMe also inhibited the degradation of an inhibitory protein called inhibitor kappaB (IkappaB). Therefore, it was suggested that PrsDMe inhibited the expression of LPS-induced iNOS and COX-2 genes by suppressing NF-kappaB activation at the transcriptional level. Also, PrsDMe showed carrageenan-induced acute anti-inflammatory activity and the adjuvant-induced anti-arthritic activity in mice. In conclusion, we suggest that these compounds exert an anti-inflammatory effect through the regulation of the NF-kappaB pathway. The different activities of PD, PrsD and PrsDMe are based on the structure of the sugar substituent or methyl group at the C28-carboxyl position.