Retrofractamide BCAS# 54794-74-0 |
Quality Control & MSDS
Number of papers citing our products
Chemical structure
Cas No. | 54794-74-0 | SDF | Download SDF |
PubChem ID | N/A | Appearance | Powder |
Formula | C22H29NO3 | M.Wt | 355.5 |
Type of Compound | Alkaloids | Storage | Desiccate at -20°C |
Solubility | Soluble in Chloroform,Dichloromethane,Ethyl Acetate,DMSO,Acetone,etc. | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
Retrofractamide B Dilution Calculator
Retrofractamide B Molarity Calculator
1 mg | 5 mg | 10 mg | 20 mg | 25 mg | |
1 mM | 2.8129 mL | 14.0647 mL | 28.1294 mL | 56.2588 mL | 70.3235 mL |
5 mM | 0.5626 mL | 2.8129 mL | 5.6259 mL | 11.2518 mL | 14.0647 mL |
10 mM | 0.2813 mL | 1.4065 mL | 2.8129 mL | 5.6259 mL | 7.0323 mL |
50 mM | 0.0563 mL | 0.2813 mL | 0.5626 mL | 1.1252 mL | 1.4065 mL |
100 mM | 0.0281 mL | 0.1406 mL | 0.2813 mL | 0.5626 mL | 0.7032 mL |
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations. |
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
- Guineensine
Catalog No.:BCN0499
CAS No.:55038-30-7
- 5α,8α-Epidioxyergost-6-en-3β-ol
Catalog No.:BCN0498
CAS No.:82227-99-4
- Sarmentine
Catalog No.:BCN0497
CAS No.:78910-33-5
- Muramine
Catalog No.:BCN0496
CAS No.:2292-20-8
- Uvamalol D
Catalog No.:BCN0495
CAS No.:545404-02-2
- 6-O-Veratroylcatalpol
Catalog No.:BCN0494
CAS No.:56973-43-4
- Piceatannol 4'-O-glucoside
Catalog No.:BCN0493
CAS No.:116181-54-5
- Piperchabamide B
Catalog No.:BCN0492
CAS No.:807618-21-9
- Tsaokoin
Catalog No.:BCN0491
CAS No.:343605-41-4
- Apigenin 7,4'-di-O-alloside
Catalog No.:BCN0490
CAS No.:95693-63-3
- 4''-O-Methylcatalposide
Catalog No.:BCN0489
CAS No.:887140-17-2
- Piperdardine
Catalog No.:BCN0488
CAS No.:188426-70-2
- Chingchengenamide A
Catalog No.:BCN0501
CAS No.:139906-29-9
- Isoorientin 2''-O-rhamnoside
Catalog No.:BCN0502
CAS No.:50980-94-4
- 2E,4E-Decadienoylpiperidide
Catalog No.:BCN0503
CAS No.:42997-42-2
- 2E-Decenoylpiperidide
Catalog No.:BCN0504
CAS No.:147030-02-2
- Piperanine
Catalog No.:BCN0505
CAS No.:23512-46-1
- (3R,5R)-1-(4-Hydroxyphenyl)-7-phenylheptane-3,5-diol
Catalog No.:BCN0506
CAS No.:112494-44-7
- Alpinin A
Catalog No.:BCN0507
CAS No.:2151847-03-7
- 4'-Hydroxy-5,6,7-trimethoxyflavanone
Catalog No.:BCN0508
CAS No.:72943-91-0
- 7-O-Methylaromadendrin
Catalog No.:BCN0509
CAS No.:37971-69-0
- 4-Formylphenyl(tetra-O-acetyl)-β-D-glucopyranoside
Catalog No.:BCN0510
CAS No.:31873-42-4
- (3R,5R)-1-(4-Hydroxy-3-methoxyphenyl)-7-(3,4-dihydroxyphenyl)heptane-3,5-diol
Catalog No.:BCN0511
CAS No.:408324-13-0
- Methyl epi-dihydrophaseate
Catalog No.:BCN0512
CAS No.:57761-30-5
Amide alkaloids characterization and neuroprotective properties of Piper nigrum L.: A comparative study with fruits, pericarp, stalks and leaves.[Pubmed:34474242]
Food Chem. 2021 Aug 10;368:130832.
Piper nigrum L. is commonly used worldwide and its pericarp, stalks, leaves will be major wastes materials. 42 amide alkaloids were identified in black, white pepper and pericarp by UHPLC-LTQ-Orbitrap HRMS method, followed by 40 constituents in stalks and 36 constituents in leaves. 8 amide alkaloids were reported for the first time in P. nigrum. An ultra-high-performance supercritical fluid chromatography (UHPSFC)-MS method was firstly applied to simultaneously determine 9 characteristic constituents (piperine, piperlonguminine, piperanine, pipercallosine, dehydropipernonaline, pipernonatine, Retrofractamide B, pellitorine and guineensine). The most abundant compound in each extract was piperine with a concentration from 0.10 to 12.37 mg/g of dry weight. The fruits, pericarp and leaves extracts could improve cell viability in 6-OHDA-induced SK-N-SH and SH-SY5Y cells. The results showed the characteristics of amide alkaloids of different parts of P. nigrum and evaluated their neuroprotective activities.
LC-HRMS/MS-based phytochemical profiling of Piper spices: Global association of piperamides with endocannabinoid system modulation.[Pubmed:33641990]
Food Res Int. 2021 Mar;141:110123.
The plant genus Piper comprises extensively consumed spice taxa like black pepper (P. nigrum L.) or long pepper (P. longum L.). The chronic dietary use of different Piper spices has been associated with different health benefits, though the molecular mechanisms remain poorly understood. The aim of this work was to perform the liquid-chromatography-high-resolution tandem mass spectrometry (LC-HRMS/MS) profiling and LC-DAD quantification of piperamides in several Piper species and varieties and study their ability to modulate the endocannabinoid system (ECS). LC-HRMS/MS analysis revealed a number of 42 piperamides grouped into six structural classes, with 22 of them, notably piperine, Retrofractamide B, guineensine, piperchabamide C, being also quantified by LC-DAD. The multivariate analysis showed that P. nigrum and P. longum are very similar with respect to their piperamide profile, while the other Piper spices (P. retrofractum, P. guineense, P. cubeba, P. borbonense) might have significantly different metabolite patterns. The results from the biological assays confirmed that guineensine and total piperamides are strongly correlated with anandamide (AEA) cellular uptake inhibition. While none of the Piper spice extracts showed binding activity at cannabinoid CB1 receptors, some P. nigrum varieties exhibited moderate binding interactions with CB2 receptors. Overall, the analytical profiling enabled global annotations of piperamides associated to cannabimimetic effects in Piper spices.
New amides and gastroprotective constituents from the fruit of Piper chaba.[Pubmed:14994194]
Planta Med. 2004 Feb;70(2):152-9.
The 80 % aqueous acetone extract from the fruit of Piper chaba was found to show protective effects on ethanol- and indomethacin-induced gastric lesions in rats. From the aqueous acetone extract, four new amides named piperchabamides A ( 1), B ( 2), C ( 3), and D ( 4) were isolated, and their structures were determined on the basis of chemical and physicochemical evidence. In addition, the gastroprotective effects of the principal constituents, piperine ( 5), piperanine ( 6), pipernonaline ( 7), dehydropipernonaline ( 8), piperlonguminine ( 9), Retrofractamide B ( 10), guineensine ( 11), N-isobutyl-(2 E,4 E)-octadecadienamide ( 12), N-isobutyl-(2 E,4 E,14 Z)-eicosatrienamide ( 13), and methyl piperate ( 14), were examined. As a result, compounds 5 - 10 and 12 - 14 significantly inhibited ethanol-induced gastric lesions at a dose of 25 mg/kg, p. o., while 5, 7, 8, 10, 12, and 13 also significantly inhibited indomethacin-induced gastric lesions at the same dose.