Home >> Research Area >>Natural Products>>Lignans>> Secoisolariciresinol Diglucoside

Secoisolariciresinol Diglucoside

CAS# 148244-82-0

Secoisolariciresinol Diglucoside

2D Structure

Catalog No. BCN1212----Order now to get a substantial discount!

Product Name & Size Price Stock
Secoisolariciresinol Diglucoside: 5mg $58 In Stock
Secoisolariciresinol Diglucoside: 10mg Please Inquire In Stock
Secoisolariciresinol Diglucoside: 20mg Please Inquire Please Inquire
Secoisolariciresinol Diglucoside: 50mg Please Inquire Please Inquire
Secoisolariciresinol Diglucoside: 100mg Please Inquire Please Inquire
Secoisolariciresinol Diglucoside: 200mg Please Inquire Please Inquire
Secoisolariciresinol Diglucoside: 500mg Please Inquire Please Inquire
Secoisolariciresinol Diglucoside: 1000mg Please Inquire Please Inquire
Related Products

Quality Control of Secoisolariciresinol Diglucoside

3D structure

Package In Stock

Secoisolariciresinol Diglucoside

Number of papers citing our products

Chemical Properties of Secoisolariciresinol Diglucoside

Cas No. 148244-82-0 SDF Download SDF
PubChem ID 9917980 Appearance Powder
Formula C32H46O16 M.Wt 686.71
Type of Compound Lignans Storage Desiccate at -20°C
Solubility Soluble in Chloroform,Dichloromethane,Ethyl Acetate,DMSO,Acetone,etc.
Chemical Name (2R,3R,4S,5S,6R)-2-[(2R,3R)-2,3-bis[(4-hydroxy-3-methoxyphenyl)methyl]-4-[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxybutoxy]-6-(hydroxymethyl)oxane-3,4,5-triol
SMILES COC1=C(C=CC(=C1)CC(COC2C(C(C(C(O2)CO)O)O)O)C(CC3=CC(=C(C=C3)O)OC)COC4C(C(C(C(O4)CO)O)O)O)O
Standard InChIKey SBVBJPHMDABKJV-PGCJWIIOSA-N
Standard InChI InChI=1S/C32H46O16/c1-43-21-9-15(3-5-19(21)35)7-17(13-45-31-29(41)27(39)25(37)23(11-33)47-31)18(8-16-4-6-20(36)22(10-16)44-2)14-46-32-30(42)28(40)26(38)24(12-34)48-32/h3-6,9-10,17-18,23-42H,7-8,11-14H2,1-2H3/t17-,18-,23+,24+,25+,26+,27-,28-,29+,30+,31+,32+/m0/s1
General tips For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months.
We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months.
Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it.
About Packaging 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial.
2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial.
3. Try to avoid loss or contamination during the experiment.
Shipping Condition Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request.

Source of Secoisolariciresinol Diglucoside

The seeds of Linum usitatissimum L.

Biological Activity of Secoisolariciresinol Diglucoside

DescriptionSecoisolariciresinol diglucoside(SDG) is a phytoestrogen, estrogens and phytoestrogen from soy have been reported to have mild hypotensive effects, and SDG is a long-acting hypotensive agent, and that the hypotensive effect is mediated through the guanylate cyclase enzyme. SDG has strong antioxidant activity, cardioprotective effects, reduces the blood levels of low-density lipoprotein cholesterol, and reduces the risk of hormone related cancer.
TargetsHO-1 | VEGFR | NOS | AMPK | NF-kB | TNF-α | Bcl-2/Bax | ROS | LDL
In vivo

Secoisolariciresinol diglucoside in high-fat diet and streptozotocin-induced diabetic nephropathy in rats: a possible renoprotective effect.[Pubmed: 25316298]

J Physiol Biochem. 2014 Dec;70(4):961-9.

Due to substantial morbidity and high complication rate of diabetes mellitus, which is considered as the third killer in the world, a search for the effective blockade of the progression of diabetic nephropathy (DN) remains a therapeutic challenge. Alternative antidiabetic drugs from natural plants are highly demanded nowadays. The aim of this study was to investigate the renoprotective effect of Secoisolariciresinol Diglucoside (SDG) on DN induced in rats.
METHODS AND RESULTS:
Diabetes was induced in male Sprague-Dawley rats by a high-fat diet (HFD) and an intraperitoneal 35 mg/kg streptozotocin (STZ) injection. Rats were divided into four groups: normal control rats, diabetic control rats, diabetic rats treated with SDG at 10 mg/kg/day for 4 weeks, and diabetic rats treated with SDG at 20 mg/kg/day for 4 weeks. At the end of the treatment, blood and renal tissue samples were collected for biochemical examination. The results revealed that SDG treatment significantly increased insulin level and decreased blood glucose, fructosamine, creatinine, and blood urea nitrogen levels in diabetic rats. Also, SDG significantly increased renal reduced glutathione, superoxide dismutase and decreased malondialdehyde and nitric oxide levels. In addition, SDG downregulated the renal nuclear factor kappa-B (NF-κB), tumor necrosis factor (TNF)-α, and inducible nitric oxide synthase (iNOS) and upregulated renal survivin and B-cell lymphoma-2 (Bcl-2) expressions when compared with untreated diabetic control rats.
CONCLUSIONS:
This study demonstrated, for the first time, the renoprotective effects of SDG in HFD/STZ-induced DN in rats through correction of hyperglycemia; attenuation of oxidative/nitrosative stress markers; downregulation of renal expressions of inflammatory markers NF-κB, TNF-α, and iNOS; along with upregulation of renal expressions of antiapoptotic markers survivin and Bcl-2.

Secoisolariciresinol Diglucoside (SDG) Isolated from Flaxseed, an Alternative to ACE Inhibitors in the Treatment of Hypertension.[Pubmed: 24436618]

Int J Angiol. 2013 Dec;22(4):235-8.

Secoisolariciresinol Diglucoside(SDG) is a plant lignan isolated from flaxseed and is phytoestrogen. SDG is a potent and long-acting hypotensive agent. Plant phytoestrogens have inhibitory effects on angiotensin-converting enzyme (ACE). The hypotensive effects of SDG, a phytoestrogen, may be mediated through inhibition of ACE. The objective of this study was to investigate if SDG-induced hypotension is mediated through inhibition of ACE.
METHODS AND RESULTS:
The Sprague Dawley male rats were anesthetized and trachea was cannulated. The right jugular vein was cannulated to administer the drug and the carotid artery was cannulated to record arterial pressures using PIOEZ-1 miniature model transducer (Becton, Dickinson and Company, Franklin Lakes, NJ) and Beckman dynograph (Beckman Instruments, Inc., Schiller Park, IL).
CONCLUSIONS:
The data suggest that SDG reduced the angiotensin I-induced rise in the arterial pressures and hence SDG is a potent ACE inhibitor.

Protocol of Secoisolariciresinol Diglucoside

Cell Research

Secoisolariciresinol diglucoside abrogates oxidative stress-induced damage in cardiac iron overload condition.[Pubmed: 25822525]

PLoS One. 2015 Mar 30;10(3):e0122852.

Cardiac iron overload is directly associated with cardiac dysfunction and can ultimately lead to heart failure.
METHODS AND RESULTS:
This study examined the effect of Secoisolariciresinol Diglucoside (SDG), a component of flaxseed, on iron overload induced cardiac damage by evaluating oxidative stress, inflammation and apoptosis in H9c2 cardiomyocytes. Cells were incubated with 50 μ5M iron for 24 hours and/or a 24 hour pre-treatment of 500 μ M SDG. Cardiac iron overload resulted in increased oxidative stress and gene expression of the inflammatory mediators tumor necrosis factor-α, interleukin-10 and interferon γ, as well as matrix metalloproteinases-2 and -9. Increased apoptosis was evident by increased active caspase 3/7 activity and increased protein expression of Forkhead box O3a, caspase 3 and Bax. Cardiac iron overload also resulted in increased protein expression of p70S6 Kinase 1 and decreased expression of AMP-activated protein kinase. Pre-treatment with SDG abrogated the iron-induced increases in oxidative stress, inflammation and apoptosis, as well as the increased p70S6 Kinase 1 and decreased AMP-activated protein kinase expression. The decrease in superoxide dismutase activity by iron treatment was prevented by pre-treatment with SDG in the presence of iron.
CONCLUSIONS:
Based on these findings we conclude that SDG was cytoprotective in an in vitro model of iron overload induced redox-inflammatory damage, suggesting a novel potential role for SDG in cardiac iron overload.

Animal Research

Reduction of serum cholesterol and hypercholesterolemic atherosclerosis in rabbits by secoisolariciresinol diglucoside isolated from flaxseed.[Pubmed: 10077521]

Secoisolariciresinol diglucoside induces neovascularization-mediated cardioprotection against ischemia-reperfusion injury in hypercholesterolemic myocardium.[Pubmed: 18001768 ]

J Mol Cell Cardiol. 2008 Jan;44(1):170-9.

Hypercholesterolemia (HC) induced endothelial cell dysfunction and decreased endothelial nitric oxide formation results in impaired angiogenesis and subsequent cardiovascular disorders. Therapeutic angiogenesis is known to be a novel strategy for treatment of patients with ischemic heart disease. We have shown that Secoisolariciresinol Diglucoside (SDG) is angiogenic as well as cardioprotective against myocardial ischemia.
METHODS AND RESULTS:
In the present study, we examined the efficacy of SDG in a hypercholesterolemic myocardial infarction (MI) model. The rats were maintained on a normal and high cholesterol diet (2%) for 8 weeks followed by oral administration of SDG (20 mg/kg) for 2 weeks. The rats were divided into four groups (n=24 in each): Control (C); SDG control (SDG); HC; and HC+SDG (HSDG). Isolated hearts subjected to 30 min of global ischemia followed by 120 min of reperfusion were used to measure the cardiac functions, infarct size and to examine the protein expression profile. After treatment, MI was induced by ligating the left anterior descending artery. Echocardiographic parameters were examined 30 days after MI. Significant reduction in total cholesterol, LDL-cholesterol, triglycerides and an increase in HDL-cholesterol levels were observed in HSDG as compared to the HC. Decreased infarct size was observed in the HSDG group (43%) compared to the HC (54%). Increased phosphorylation of endothelial nitric oxide synthase (p-eNOS) (3.1-fold), vascular endothelial growth factor (1.9-fold) and heme oxygenase-1 (2.3-fold) was observed in the HSDG group as compared to the HC group. Significant improvement in left ventricular functions was also observed in the HSDG group as evidenced by increased ejection fraction (55% vs. 45%), fractional shortening (28% vs. 22%) and decreased left ventricular inner diameter in systole (8 vs. 6 mm) in HSDG compared to HC. Moreover, MI model has shown increased capillary density (2531 vs. 1901) and arteriolar density (2.6 vs. 1.8) in SDG-treated rats as compared to the HC. The increased capillary and arteriolar density along with increased left ventricular functions on SDG treatment might be due to increased HO-1, VEGF and p-eNOS expression.
CONCLUSIONS:
In conclusion, our study demonstrates for the first time that SDG treatment reduces ventricular remodeling by neovascularization of the infarcted HC myocardium.

Circulation. 1999 Mar 16;99(10):1355-62.

Secoisolariciresinol Diglucoside (SDG) is a plant lignan isolated from flaxseed. Lignans are platelet-activating factor-receptor antagonists that would inhibit the production of oxygen radicals by polymorphonuclear leukocytes.
METHODS AND RESULTS:
SDG is an antioxidant. Antioxidants studied thus far are known to reduce hypercholesterolemic atherosclerosis. The objective of this study was to determine the effect of SDG on various blood lipid and aortic tissue oxidative stress parameters and on the development of atherosclerosis in rabbits fed a high-cholesterol diet. CONCLUSIONS:
CONCLUSIONS:
These results suggest that SDG reduced hypercholesterolemic atherosclerosis and that this effect was associated with a decrease in serum cholesterol, LDL-C, and lipid peroxidation product and an increase in HDL-C and antioxidant reserve.

Secoisolariciresinol Diglucoside Dilution Calculator

Concentration (start)
x
Volume (start)
=
Concentration (final)
x
Volume (final)
 
 
 
C1
V1
C2
V2

calculate

Secoisolariciresinol Diglucoside Molarity Calculator

Mass
=
Concentration
x
Volume
x
MW*
 
 
 
g/mol

calculate

Preparing Stock Solutions of Secoisolariciresinol Diglucoside

1 mg 5 mg 10 mg 20 mg 25 mg
1 mM 1.4562 mL 7.2811 mL 14.5622 mL 29.1244 mL 36.4055 mL
5 mM 0.2912 mL 1.4562 mL 2.9124 mL 5.8249 mL 7.2811 mL
10 mM 0.1456 mL 0.7281 mL 1.4562 mL 2.9124 mL 3.6405 mL
50 mM 0.0291 mL 0.1456 mL 0.2912 mL 0.5825 mL 0.7281 mL
100 mM 0.0146 mL 0.0728 mL 0.1456 mL 0.2912 mL 0.3641 mL
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations.

Organizitions Citing Our Products recently

 
 
 

Calcutta University

University of Minnesota

University of Maryland School of Medicine

University of Illinois at Chicago

The Ohio State University

University of Zurich

Harvard University

Colorado State University

Auburn University

Yale University

Worcester Polytechnic Institute

Washington State University

Stanford University

University of Leipzig

Universidade da Beira Interior

The Institute of Cancer Research

Heidelberg University

University of Amsterdam

University of Auckland
TsingHua University
TsingHua University
The University of Michigan
The University of Michigan
Miami University
Miami University
DRURY University
DRURY University
Jilin University
Jilin University
Fudan University
Fudan University
Wuhan University
Wuhan University
Sun Yat-sen University
Sun Yat-sen University
Universite de Paris
Universite de Paris
Deemed University
Deemed University
Auckland University
Auckland University
The University of Tokyo
The University of Tokyo
Korea University
Korea University
Featured Products
New Products
 

References on Secoisolariciresinol Diglucoside

Reduction of serum cholesterol and hypercholesterolemic atherosclerosis in rabbits by secoisolariciresinol diglucoside isolated from flaxseed.[Pubmed:10077521]

Circulation. 1999 Mar 16;99(10):1355-62.

BACKGROUND: Secoisolariciresinol Diglucoside (SDG) is a plant lignan isolated from flaxseed. Lignans are platelet-activating factor-receptor antagonists that would inhibit the production of oxygen radicals by polymorphonuclear leukocytes. SDG is an antioxidant. Antioxidants studied thus far are known to reduce hypercholesterolemic atherosclerosis. The objective of this study was to determine the effect of SDG on various blood lipid and aortic tissue oxidative stress parameters and on the development of atherosclerosis in rabbits fed a high-cholesterol diet. METHODS AND RESULTS: Rabbits were assigned to 4 groups: group 1, control; group 2, SDG control (15 mg. kg body wt-1. d-1 PO); group 3, 1% cholesterol diet; and group 4, same as group 3 but with added SDG (15 mg. kg body wt-1. d-1 PO). Blood samples were collected before (time 0) and after 4 and 8 weeks of experimental diets for measurement of serum triglycerides, total cholesterol (TC), and LDL, HDL, and VLDL cholesterol (LDL-C, HDL-C, and VLDL-C). The aorta was removed at the end of the protocol for assessment of atherosclerotic plaques; malondialdehyde, an aortic tissue lipid peroxidation product; and aortic tissue chemiluminescence, a marker for antioxidant reserve. Serum TC, LDL-C, and the ratios LDL-C/HDL-C and TC/HDL-C increased in groups 3 and 4 compared with time 0, the increase being smaller in group 4 than in group 3. Serum HDL-C decreased in group 3 and increased in group 4 compared with time 0, but changes were lower in group 3 than in group 4. SDG reduced TC and LDL-C by 33% and 35%, respectively, at week 8 but increased HDL-C significantly, by>140%, as early as week 4. It also decreased TC/LDL-C and LDL-C/HDL-C ratios by approximately 64%. There was an increase in aortic malondialdehyde and chemiluminescence in group 3, and they were lower in group 4 than in group 3. SDG reduced hypercholesterolemic atherosclerosis by 73%. CONCLUSIONS: These results suggest that SDG reduced hypercholesterolemic atherosclerosis and that this effect was associated with a decrease in serum cholesterol, LDL-C, and lipid peroxidation product and an increase in HDL-C and antioxidant reserve.

Antidiabetic effect of secoisolariciresinol diglucoside in streptozotocin-induced diabetic rats.[Pubmed:23271000]

Phytomedicine. 2013 Feb 15;20(3-4):237-45.

Diabetes mellitus is a chronic metabolic disorder characterized by hyperglycaemia. Its complications such as neuropathy, cardiopathy, nephropathy, and micro and macro vascular diseases are believed to be due to the increase in oxidative stress and decrease in the level of antioxidants. The aim of this study was to determine the antihyperglycemic activity of synthetic Secoisolariciresinol Diglucoside (SDG) in streptozotocin (STZ)-induced diabetic rats. The synthetic SDG in a single-dose (20 mg/kg b.w.) two-day study showed dose-dependent reduction in glucose levels with maximum effect of 64.62% at 48 h post drug treatment (p<0.05), which is comparable to that of the standard drug tolbutamide (20 mg/kg b.w.). In a multi-dose fourteen-day study, lower doses of SDG (5 and 10 mg/kg b.w.) exhibited moderate reduction in glucose levels, lipid profile, restoration of antioxidant enzymes and improvement of the insulin and c-peptide levels which shows the regeneration of beta-cell which secretes insulin. Altered levels of lipids and enzymatic antioxidants were also restored by the SDG to the considerable levels in diabetic rats. Results of the present investigation suggest that diabetes is associated with an increase in oxidative stress as shown by increase in serum malondialdehyde (MDA), decreased levels of catalase (CAT), superoxide dismutase (SOD), and glutathione (GSH). Also, diabetes is associated with an increase in serum total cholesterol as well as triglycerides levels and decrease in insulin and c-peptide levels. SDG is effective in retarding the development of diabetic complications. We propose that synthetic SDG exerts anti hyperglycemic effect by preventing the liver from peroxidation damage through inhibition of ROS level mediated increased level of enzymatic and non-enzymatic antioxidants. And, also maintaining tissue function which results in improving the sensitivity and response of target cells in STZ-induced diabetic rats to insulin.

Secoisolariciresinol Diglucoside (SDG) Isolated from Flaxseed, an Alternative to ACE Inhibitors in the Treatment of Hypertension.[Pubmed:24436618]

Int J Angiol. 2013 Dec;22(4):235-8.

Secoisolariciresionol diglucoside (SDG) is a plant lignan isolated from flaxseed and is phytoestrogen. SDG is a potent and long-acting hypotensive agent. Plant phytoestrogens have inhibitory effects on angiotensin-converting enzyme (ACE). The hypotensive effects of SDG, a phytoestrogen, may be mediated through inhibition of ACE. The objective of this study was to investigate if SDG-induced hypotension is mediated through inhibition of ACE. The Sprague Dawley male rats were anesthetized and trachea was cannulated. The right jugular vein was cannulated to administer the drug and the carotid artery was cannulated to record arterial pressures using PIOEZ-1 miniature model transducer (Becton, Dickinson and Company, Franklin Lakes, NJ) and Beckman dynograph (Beckman Instruments, Inc., Schiller Park, IL). The effects of angiotensin I (0.2 microg/kg, intravenously [IV]) in the absence and presence of SDG (10 mg/kg, IV), and SDG alone on systolic, diastolic, and mean arterial pressures were measured before and after 15, 30, and 60 minutes of drug administration. SDG decreased the systolic, diastolic, and mean arterial pressure by 37, 47, and 43%, respectively, at 15 minutes and 18.8, 21.2, and 20.3%, respectively, at 60 minutes. Angiotensin I increased the arterial pressure. SDG decreased angiotensin I-induced rise in the systolic, diastolic, and mean arterial pressures by 60, 58, and 51%, respectively, at 15 minutes and 48, 46, and 30%, respectively, at 60 minutes. The data suggest that SDG reduced the angiotensin I-induced rise in the arterial pressures and hence SDG is a potent ACE inhibitor.

Secoisolariciresinol diglucoside induces neovascularization-mediated cardioprotection against ischemia-reperfusion injury in hypercholesterolemic myocardium.[Pubmed:18001768]

J Mol Cell Cardiol. 2008 Jan;44(1):170-9.

Hypercholesterolemia (HC) induced endothelial cell dysfunction and decreased endothelial nitric oxide formation results in impaired angiogenesis and subsequent cardiovascular disorders. Therapeutic angiogenesis is known to be a novel strategy for treatment of patients with ischemic heart disease. We have shown that Secoisolariciresinol Diglucoside (SDG) is angiogenic as well as cardioprotective against myocardial ischemia. In the present study, we examined the efficacy of SDG in a hypercholesterolemic myocardial infarction (MI) model. The rats were maintained on a normal and high cholesterol diet (2%) for 8 weeks followed by oral administration of SDG (20 mg/kg) for 2 weeks. The rats were divided into four groups (n=24 in each): Control (C); SDG control (SDG); HC; and HC+SDG (HSDG). Isolated hearts subjected to 30 min of global ischemia followed by 120 min of reperfusion were used to measure the cardiac functions, infarct size and to examine the protein expression profile. After treatment, MI was induced by ligating the left anterior descending artery. Echocardiographic parameters were examined 30 days after MI. Significant reduction in total cholesterol, LDL-cholesterol, triglycerides and an increase in HDL-cholesterol levels were observed in HSDG as compared to the HC. Decreased infarct size was observed in the HSDG group (43%) compared to the HC (54%). Increased phosphorylation of endothelial nitric oxide synthase (p-eNOS) (3.1-fold), vascular endothelial growth factor (1.9-fold) and heme oxygenase-1 (2.3-fold) was observed in the HSDG group as compared to the HC group. Significant improvement in left ventricular functions was also observed in the HSDG group as evidenced by increased ejection fraction (55% vs. 45%), fractional shortening (28% vs. 22%) and decreased left ventricular inner diameter in systole (8 vs. 6 mm) in HSDG compared to HC. Moreover, MI model has shown increased capillary density (2531 vs. 1901) and arteriolar density (2.6 vs. 1.8) in SDG-treated rats as compared to the HC. The increased capillary and arteriolar density along with increased left ventricular functions on SDG treatment might be due to increased HO-1, VEGF and p-eNOS expression. In conclusion, our study demonstrates for the first time that SDG treatment reduces ventricular remodeling by neovascularization of the infarcted HC myocardium.

Secoisolariciresinol diglucoside abrogates oxidative stress-induced damage in cardiac iron overload condition.[Pubmed:25822525]

PLoS One. 2015 Mar 30;10(3):e0122852.

Cardiac iron overload is directly associated with cardiac dysfunction and can ultimately lead to heart failure. This study examined the effect of Secoisolariciresinol Diglucoside (SDG), a component of flaxseed, on iron overload induced cardiac damage by evaluating oxidative stress, inflammation and apoptosis in H9c2 cardiomyocytes. Cells were incubated with 50 mu5M iron for 24 hours and/or a 24 hour pre-treatment of 500 mu M SDG. Cardiac iron overload resulted in increased oxidative stress and gene expression of the inflammatory mediators tumor necrosis factor-alpha, interleukin-10 and interferon gamma, as well as matrix metalloproteinases-2 and -9. Increased apoptosis was evident by increased active caspase 3/7 activity and increased protein expression of Forkhead box O3a, caspase 3 and Bax. Cardiac iron overload also resulted in increased protein expression of p70S6 Kinase 1 and decreased expression of AMP-activated protein kinase. Pre-treatment with SDG abrogated the iron-induced increases in oxidative stress, inflammation and apoptosis, as well as the increased p70S6 Kinase 1 and decreased AMP-activated protein kinase expression. The decrease in superoxide dismutase activity by iron treatment was prevented by pre-treatment with SDG in the presence of iron. Based on these findings we conclude that SDG was cytoprotective in an in vitro model of iron overload induced redox-inflammatory damage, suggesting a novel potential role for SDG in cardiac iron overload.

Secoisolariciresinol diglucoside in high-fat diet and streptozotocin-induced diabetic nephropathy in rats: a possible renoprotective effect.[Pubmed:25316298]

J Physiol Biochem. 2014 Dec;70(4):961-9.

Due to substantial morbidity and high complication rate of diabetes mellitus, which is considered as the third killer in the world, a search for the effective blockade of the progression of diabetic nephropathy (DN) remains a therapeutic challenge. Alternative antidiabetic drugs from natural plants are highly demanded nowadays. The aim of this study was to investigate the renoprotective effect of Secoisolariciresinol Diglucoside (SDG) on DN induced in rats. Diabetes was induced in male Sprague-Dawley rats by a high-fat diet (HFD) and an intraperitoneal 35 mg/kg streptozotocin (STZ) injection. Rats were divided into four groups: normal control rats, diabetic control rats, diabetic rats treated with SDG at 10 mg/kg/day for 4 weeks, and diabetic rats treated with SDG at 20 mg/kg/day for 4 weeks. At the end of the treatment, blood and renal tissue samples were collected for biochemical examination. The results revealed that SDG treatment significantly increased insulin level and decreased blood glucose, fructosamine, creatinine, and blood urea nitrogen levels in diabetic rats. Also, SDG significantly increased renal reduced glutathione, superoxide dismutase and decreased malondialdehyde and nitric oxide levels. In addition, SDG downregulated the renal nuclear factor kappa-B (NF-kappaB), tumor necrosis factor (TNF)-alpha, and inducible nitric oxide synthase (iNOS) and upregulated renal survivin and B-cell lymphoma-2 (Bcl-2) expressions when compared with untreated diabetic control rats. This study demonstrated, for the first time, the renoprotective effects of SDG in HFD/STZ-induced DN in rats through correction of hyperglycemia; attenuation of oxidative/nitrosative stress markers; downregulation of renal expressions of inflammatory markers NF-kappaB, TNF-alpha, and iNOS; along with upregulation of renal expressions of antiapoptotic markers survivin and Bcl-2.

Keywords:

Secoisolariciresinol Diglucoside,148244-82-0,Natural Products, buy Secoisolariciresinol Diglucoside , Secoisolariciresinol Diglucoside supplier , purchase Secoisolariciresinol Diglucoside , Secoisolariciresinol Diglucoside cost , Secoisolariciresinol Diglucoside manufacturer , order Secoisolariciresinol Diglucoside , high purity Secoisolariciresinol Diglucoside

Online Inquiry for:

      Fill out the information below

      • Size:Qty: - +

      * Required Fields

                                      Result: