Home >> Research Area >>Tyrosine Kinase/Adaptors>>ALK>> TAE684 (NVP-TAE684)

TAE684 (NVP-TAE684)

ALK inhibitor,potent and selective CAS# 761439-42-3

TAE684 (NVP-TAE684)

2D Structure

Catalog No. BCC3660----Order now to get a substantial discount!

Product Name & Size Price Stock
TAE684 (NVP-TAE684): 5mg $92 In Stock
TAE684 (NVP-TAE684): 10mg Please Inquire In Stock
TAE684 (NVP-TAE684): 20mg Please Inquire Please Inquire
TAE684 (NVP-TAE684): 50mg Please Inquire Please Inquire
TAE684 (NVP-TAE684): 100mg Please Inquire Please Inquire
TAE684 (NVP-TAE684): 200mg Please Inquire Please Inquire
TAE684 (NVP-TAE684): 500mg Please Inquire Please Inquire
TAE684 (NVP-TAE684): 1000mg Please Inquire Please Inquire
Related Products

Quality Control of TAE684 (NVP-TAE684)

3D structure

Package In Stock

TAE684 (NVP-TAE684)

Number of papers citing our products

Chemical Properties of TAE684 (NVP-TAE684)

Cas No. 761439-42-3 SDF Download SDF
PubChem ID 16038120 Appearance Powder
Formula C30H40ClN7O3S M.Wt 614.2
Type of Compound N/A Storage Desiccate at -20°C
Solubility Soluble to 3 mg/mL (4.88 mM) in DMSO
Chemical Name 5-chloro-2-N-[2-methoxy-4-[4-(4-methylpiperazin-1-yl)piperidin-1-yl]phenyl]-4-N-(2-propan-2-ylsulfonylphenyl)pyrimidine-2,4-diamine
SMILES CC(C)S(=O)(=O)C1=CC=CC=C1NC2=NC(=NC=C2Cl)NC3=C(C=C(C=C3)N4CCC(CC4)N5CCN(CC5)C)OC
Standard InChIKey QQWUGDVOUVUTOY-UHFFFAOYSA-N
Standard InChI InChI=1S/C30H40ClN7O3S/c1-21(2)42(39,40)28-8-6-5-7-26(28)33-29-24(31)20-32-30(35-29)34-25-10-9-23(19-27(25)41-4)37-13-11-22(12-14-37)38-17-15-36(3)16-18-38/h5-10,19-22H,11-18H2,1-4H3,(H2,32,33,34,35)
General tips For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months.
We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months.
Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it.
About Packaging 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial.
2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial.
3. Try to avoid loss or contamination during the experiment.
Shipping Condition Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request.

Biological Activity of TAE684 (NVP-TAE684)

DescriptionTAE684 is a potent and selective inhibitor of ALK with IC50 of 3 nM, 100-fold more sensitive for ALK than InsR.
TargetsALK    
IC503 nM     

Protocol

Cell experiment: [1]

Cell lines

Ba/F3 and Ba/F3 NPM-ALK cells

Preparation method

The solubility of this compound in DMSO is <10 mm. general tips for obtaining a higher concentration: please warm the tube at 37 °c 10 minutes and>

Reacting condition

50 nM, 48 hours

Applications

Cells were treated with various concentrations of TAE684 for 72 h and were assessed for induction of apoptosis and growth arrest by f low cytometry every 24 h. Treatment with TAE684 increased the number of Annexin V-positive Ba/F3 NPM-ALK cells in a dose- and time-dependent manner, without affecting the survival of the parental Ba/F3 cell line. At 48 h after incubation with TAE684, 85–95% of cells stained Annexin V-positive in several independent experiments. In contrast, no increase in the number of Annexin V-positive cells was seen for parental Ba/F3 cells grown in the presence of IL-3.

Animal experiment: [1]

Animal models

SCIDbeige mice injected with Karpas-299-luc cells

Dosage form

Oral administration; 1, 3, and 10 mg/kg; once daily

Application

After 2 weeks of treatment, we observed a 100-fold reduction in bioluminescence signal in the 3- and 10-mg/kg treatment groups. Although the compound was not efficacious at 1 mg/kg, after 4 weeks of treatment with TAE684 at 3 and 10mg/kg, there was a significant delay in lymphoma development and 100- to 1,000-fold reduction in luminescence signal. The TAE684- (10mg/kg) treated group appeared healthy and did not display any signs of compound- or disease-related toxicity.

Other notes

Please test the solubility of all compounds indoor, and the actual solubility may slightly differ with the theoretical value. This is caused by an experimental system error and it is normal.

References:

[1] Galkin A V, Melnick J S, Kim S, et al. Identification of NVP-TAE684, a potent, selective, and efficacious inhibitor of NPM-ALK. Proceedings of the National Academy of Sciences, 2007, 104(1): 270-275.

TAE684 (NVP-TAE684) Dilution Calculator

Concentration (start)
x
Volume (start)
=
Concentration (final)
x
Volume (final)
 
 
 
C1
V1
C2
V2

calculate

TAE684 (NVP-TAE684) Molarity Calculator

Mass
=
Concentration
x
Volume
x
MW*
 
 
 
g/mol

calculate

Preparing Stock Solutions of TAE684 (NVP-TAE684)

1 mg 5 mg 10 mg 20 mg 25 mg
1 mM 1.6281 mL 8.1407 mL 16.2813 mL 32.5627 mL 40.7034 mL
5 mM 0.3256 mL 1.6281 mL 3.2563 mL 6.5125 mL 8.1407 mL
10 mM 0.1628 mL 0.8141 mL 1.6281 mL 3.2563 mL 4.0703 mL
50 mM 0.0326 mL 0.1628 mL 0.3256 mL 0.6513 mL 0.8141 mL
100 mM 0.0163 mL 0.0814 mL 0.1628 mL 0.3256 mL 0.407 mL
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations.

Organizitions Citing Our Products recently

 
 
 

Calcutta University

University of Minnesota

University of Maryland School of Medicine

University of Illinois at Chicago

The Ohio State University

University of Zurich

Harvard University

Colorado State University

Auburn University

Yale University

Worcester Polytechnic Institute

Washington State University

Stanford University

University of Leipzig

Universidade da Beira Interior

The Institute of Cancer Research

Heidelberg University

University of Amsterdam

University of Auckland
TsingHua University
TsingHua University
The University of Michigan
The University of Michigan
Miami University
Miami University
DRURY University
DRURY University
Jilin University
Jilin University
Fudan University
Fudan University
Wuhan University
Wuhan University
Sun Yat-sen University
Sun Yat-sen University
Universite de Paris
Universite de Paris
Deemed University
Deemed University
Auckland University
Auckland University
The University of Tokyo
The University of Tokyo
Korea University
Korea University

Background on TAE684 (NVP-TAE684)

TAE684 (NVP-TAE684) is a selective inhibitor of ALK with IC50 value of 3 nM [1].

Anaplastic lymphoma kinase (ALK) is an enzyme and plays an important role in the development of the brain and exerts its effects on specific neurons in the nervous system. It has been reported that ALK involves in the pathogenesis of various cancers and serves as an important therapeutic target [1, 2].

TAE684 (NVP-TAE684) is a potent ALK inhibitor and has a different selectivity with the reported ALK inhibitor crizotinib. When tested with ALCL cell lines—Karpas-299 and SU-DHL-1 expressing NPM-ALK, TAE684 (NVP-TAE684) inhibited cell proliferation and cell apoptosis in dose-dependent manner [1]. In lung cancer cell lines harboring wild-type, H694R or E1384K mutant ALKs, TAE684 showed effective inhibition on cell proliferation and phospho-Y1604 ALK expression of H694R or E1384K mutant ALK, but also to a degree higher than that of wild-type ALK [2].

In SCIDbeige mice model with luciferized Karpas-299 cells subcutaneous xenograft, in which the invasion could be detected by a strong bioluminescence signal, oral administration of TAE684 (NVP-TAE684) caused significant reduction of lymphoma develop and 100- to 1000-fold reduction in luminecsene signal at the dose of 3 and 10 mg/kg. And, the group received TAE684 (NVP-TAE684) at the dose of 10 mg/kg appeared healthy and showed no signs of compound- or disease-related toxicity [1].

It is also reported that TAE684 is a potent inhibitor of leucine-rich repeat kinase 2 (LRRK2) with IC50 value of 7.8 nM [3].

References:
[1].  Galkin, A.V., et al., Identification of NVP-TAE684, a potent, selective, and efficacious inhibitor of NPM-ALK. Proc Natl Acad Sci U S A, 2007. 104(1): p. 270-5.
[2].  Wang, Y.W., et al., Identification of oncogenic point mutations and hyperphosphorylation of anaplastic lymphoma kinase in lung cancer. Neoplasia, 2011. 13(8): p. 704-15.
[3].  Zhang, J., et al., Characterization of TAE684 as a potent LRRK2 kinase inhibitor. Bioorg Med Chem Lett, 2012. 22(5): p. 1864-9.

Featured Products
New Products
 

References on TAE684 (NVP-TAE684)

Identification of NVP-TAE684, a potent, selective, and efficacious inhibitor of NPM-ALK.[Pubmed:17185414]

Proc Natl Acad Sci U S A. 2007 Jan 2;104(1):270-5.

Constitutive overexpression and activation of NPM-ALK fusion protein [t(2:5)(p23;q35)] is a key oncogenic event that drives the survival and proliferation of anaplastic large-cell lymphomas (ALCLs). We have identified a highly potent and selective small-molecule ALK inhibitor, NVP-TAE684, which blocked the growth of ALCL-derived and ALK-dependent cell lines with IC(50) values between 2 and 10 nM. NVP-TAE684 treatment resulted in a rapid and sustained inhibition of phosphorylation of NPM-ALK and its downstream effectors and subsequent induction of apoptosis and cell cycle arrest. In vivo, NVP-TAE684 suppressed lymphomagenesis in two independent models of ALK-positive ALCL and induced regression of established Karpas-299 lymphomas. NVP-TAE684 also induced down-regulation of CD30 expression, suggesting that CD30 may be used as a biomarker of therapeutic NPM-ALK kinase activity inhibition.

Activating ALK mutations found in neuroblastoma are inhibited by Crizotinib and NVP-TAE684.[Pubmed:21838707]

Biochem J. 2011 Dec 15;440(3):405-13.

Mutations in the kinase domain of ALK (anaplastic lymphoma kinase) have recently been shown to be important for the progression of the childhood tumour neuroblastoma. In the present study we investigate six of the putative reported constitutively active ALK mutations, in positions G1128A, I1171N, F1174L, R1192P, F1245C and R1275Q. Our analyses were performed in cell-culture-based systems with both mouse and human ALK mutant variants and subsequently in a Drosophila melanogaster model system. Our investigation addressed the transforming potential of the putative gain-of-function ALK mutations as well as their signalling potential and the ability of two ATP-competitive inhibitors, Crizotinib (PF-02341066) and NVP-TAE684, to abrogate the activity of ALK. The results of the present study indicate that all mutations tested are of an activating nature and thus are implicated in tumour initiation or progression of neuroblastoma. Importantly for neuroblastoma patients, all ALK mutations used in the present study can be blocked by the inhibitors, although some mutants exhibited higher levels of drug sensitivity than others.

NVP-TAE684 reverses multidrug resistance (MDR) in human osteosarcoma by inhibiting P-glycoprotein (PGP1) function.[Pubmed:26603906]

Br J Pharmacol. 2016 Feb;173(3):613-26.

BACKGROUND AND PURPOSE: Increased expression of P-glycoprotein (PGP1) is one of the major causes of multidrug resistance (MDR) in cancer, including in osteosarcoma, which eventually leads to the failure of cancer chemotherapy. Thus, there is an urgent need to develop effective therapeutic strategies to override the expression and function of PGP1 to counter MDR in cancer patients. EXPERIMENTAL APPROACH: In an effort to search for new chemical entities targeting PGP1-associated MDR in osteosarcoma, we screened a 500+ compound library of known kinase inhibitors with established kinase selectivity profiles. We aimed to discover potential drug synergistic effects among kinase inhibitors and general chemotherapeutics by combining inhibitors with chemotherapy drugs such as doxorubicin and paclitaxel. The human osteosarcoma MDR cell lines U2OSR2 and KHOSR2 were used for the initial screen and secondary mechanistic studies. KEY RESULTS: After screening 500+ kinase inhibitors, we identified NVP-TAE684 as the most effective MDR reversing agent. NVP-TAE684 significantly reversed chemoresistance when used in combination with doxorubicin, paclitaxel, docetaxel, vincristine, ET-743 or mitoxantrone. NVP-TAE684 itself is not a PGP1 substrate competitive inhibitor, but it can increase the intracellular accumulation of PGP1 substrates in PGP1-overexpressing cell lines. NVP-TAE684 was found to inhibit the function of PGP1 by stimulating PGP1 ATPase activity, a phenomenon reported for other PGP1 inhibitors. CONCLUSIONS AND IMPLICATIONS: The application of NVP-TAE684 to restore sensitivity of osteosarcoma MDR cells to the cytotoxic effects of chemotherapeutics will be useful for further study of PGP1-mediated MDR in human cancer and may ultimately benefit cancer patients.

Description

NVP-TAE 684 (TAE 684) is a highly potent and selective ALK inhibitor, which blocks the growth of ALCL-derived and ALK-dependent cell lines with IC50 values between 2 and 10 nM.

Keywords:

TAE684 (NVP-TAE684),761439-42-3,Natural Products,ALK, buy TAE684 (NVP-TAE684) , TAE684 (NVP-TAE684) supplier , purchase TAE684 (NVP-TAE684) , TAE684 (NVP-TAE684) cost , TAE684 (NVP-TAE684) manufacturer , order TAE684 (NVP-TAE684) , high purity TAE684 (NVP-TAE684)

Online Inquiry for:

      Fill out the information below

      • Size:Qty: - +

      * Required Fields

                                      Result: