Xanthohumol DCAS# 274675-25-1 |
Quality Control & MSDS
Number of papers citing our products
Chemical structure
3D structure
Cas No. | 274675-25-1 | SDF | Download SDF |
PubChem ID | 10317069 | Appearance | Yellow powder |
Formula | C21H22O6 | M.Wt | 370.4 |
Type of Compound | Chalcones | Storage | Desiccate at -20°C |
Solubility | Soluble in Chloroform,Dichloromethane,Ethyl Acetate,DMSO,Acetone,etc. | ||
Chemical Name | (E)-1-[2,4-dihydroxy-3-(2-hydroxy-3-methylbut-3-enyl)-6-methoxyphenyl]-3-(4-hydroxyphenyl)prop-2-en-1-one | ||
SMILES | CC(=C)C(CC1=C(C=C(C(=C1O)C(=O)C=CC2=CC=C(C=C2)O)OC)O)O | ||
Standard InChIKey | IIWLGOCXDBSFCM-RMKNXTFCSA-N | ||
Standard InChI | InChI=1S/C21H22O6/c1-12(2)17(24)10-15-18(25)11-19(27-3)20(21(15)26)16(23)9-6-13-4-7-14(22)8-5-13/h4-9,11,17,22,24-26H,1,10H2,2-3H3/b9-6+ | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
Description | 1. Xanthohumol and xanthohumol D are potent inducers of quinone reductase, suggests that they could be used as chemoprevention agents. |
Targets | IFN-γ | NO |
Xanthohumol D Dilution Calculator
Xanthohumol D Molarity Calculator
1 mg | 5 mg | 10 mg | 20 mg | 25 mg | |
1 mM | 2.6998 mL | 13.4989 mL | 26.9978 mL | 53.9957 mL | 67.4946 mL |
5 mM | 0.54 mL | 2.6998 mL | 5.3996 mL | 10.7991 mL | 13.4989 mL |
10 mM | 0.27 mL | 1.3499 mL | 2.6998 mL | 5.3996 mL | 6.7495 mL |
50 mM | 0.054 mL | 0.27 mL | 0.54 mL | 1.0799 mL | 1.3499 mL |
100 mM | 0.027 mL | 0.135 mL | 0.27 mL | 0.54 mL | 0.6749 mL |
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations. |
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
- 5-Methoxyisatin
Catalog No.:BCC8098
CAS No.:39755-95-8
- Coumarin 7
Catalog No.:BCC8920
CAS No.:27425-55-4
- Picroside I
Catalog No.:BCN6322
CAS No.:27409-30-9
- threo-Guaiacylglycerol
Catalog No.:BCN5161
CAS No.:27391-16-8
- 4'-Hydroxy-7-methoxyflavan
Catalog No.:BCN3497
CAS No.:27348-54-5
- VX-765
Catalog No.:BCC3648
CAS No.:273404-37-8
- Precyasterone
Catalog No.:BCN2754
CAS No.:27335-85-9
- 5-Formyl-2-furylboronic acid
Catalog No.:BCC8748
CAS No.:27329-70-0
- Tirapazamine
Catalog No.:BCC5184
CAS No.:27314-97-2
- ICI 63197
Catalog No.:BCC7188
CAS No.:27277-00-5
- Phyllostine
Catalog No.:BCN4773
CAS No.:27270-89-9
- Levobupivacaine HCl
Catalog No.:BCC4675
CAS No.:27262-48-2
- Neocryptotanshinone II
Catalog No.:BCN3138
CAS No.:27468-20-8
- Ticagrelor
Catalog No.:BCC4975
CAS No.:274693-27-5
- LE 300
Catalog No.:BCC7148
CAS No.:274694-98-3
- 7-Acetoxy-4-methylcoumarin
Catalog No.:BCC8775
CAS No.:2747-05-9
- H-Leu-OtBu.HCl
Catalog No.:BCC2974
CAS No.:2748-02-9
- O-Benzyldauricine
Catalog No.:BCC8222
CAS No.:2748-99-4
- Cyclo(D-Val-L-Pro)
Catalog No.:BCN4015
CAS No.:27483-18-7
- trans-4-Aminocyclohexanol
Catalog No.:BCC9181
CAS No.:27489-62-9
- L-Ala-ol
Catalog No.:BCC2590
CAS No.:2749-11-3
- 2-O-Acetyltutin
Catalog No.:BCN5163
CAS No.:2749-28-2
- Vildagliptin (LAF-237)
Catalog No.:BCC2112
CAS No.:274901-16-5
- Protostemonine
Catalog No.:BCN8172
CAS No.:27495-40-5
Fungal metabolites of xanthohumol with potent antiproliferative activity on human cancer cell lines in vitro.[Pubmed:23434138]
Bioorg Med Chem. 2013 Apr 1;21(7):2001-6.
Xanthohumol (1) and Xanthohumol D (2) were isolated from spent hops. Isoxanthohumol (3) was obtained from xanthohumol by isomerisation in alkaline solution. Six metabolites were obtained as a result of transformation of xanthohumol (1) by selected fungal cultures. Their structures were established on the basis of their spectral data. One of them: 2''-(2'''-hydroxyisopropyl)-dihydrofurano-[4'',5'':3',4']-4',2-dihydroxy-6'-metho xy-alpha,beta-dihydrochalcone (6) has not been previously reported in the literature. The antioxidant properties of hops flavonoids and Xanthohumol Derivatives were investigated using the 2,2'-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging method. The effects of these compounds on proliferation of MCF-7, PC-3 and HT-29 human cancer cell lines were determined by the SRB assay. With the exception of one metabolite, all tested compounds showed antiproliferative activity against the tested human cancer lines. alpha,beta-Dihydroxanthohumol (4), obtained through the biotransformation of xanthohumol, showed higher antiproliferative activity against MCF-7 human breast carcinoma cell line than cisplatin, a widely used anticancer therapeutic agent, and a comparably high activity against PC-3 human prostate cancer cell line.
Screening method for the discovery of potential cancer chemoprevention agents based on mass spectrometric detection of alkylated Keap1.[Pubmed:16194107]
Anal Chem. 2005 Oct 1;77(19):6407-14.
Natural products are important sources of drugs such as cancer chemopreventive agents, but most assays for the discovery of compounds in natural product extracts are low throughput and provide little information about lead compounds in these complex mixtures. The induction of enzymes such as quinone reductase, glucuronyl transferases, glutathione S-transferases, and sulfotransferases can protect cells against the toxic and neoplastic effects of carcinogens. An increase in the concentration of Nrf2 in the nucleus of a cell upregulates the antioxidant response element and induces the expression of these chemopreventive enzymes. Based on the hypothesis that ubiquitination and proteosome-mediated degradation of Nrf2 in the cytoplasm decreases upon the covalent modification of 1 or more of the 27 cysteine sulfhydryl groups on Keap1 (a protein that sequesters Nrf2 in the cytoplasm) and results in higher Nrf2 levels both in the cytoplasm and in the nucleus, a high-throughput mass spectrometry-based screening assay was designed to detect alkylation of sulfhydryl groups of human Keap1. As an initial high-throughput screening step, matrix-assisted laser desorption time-of-flight mass spectrometry was used to determine whether incubation of Keap1 with a botanical sample produced adducts of Keap1. Test extracts found to form adducts with Keap1 were then incubated with the alternative biological nucleophile glutathione and characterized using LC-UV-MS-MS. After validation of the assay using two model alkylating agents, fractions of an extract of hops (Humulus lupulus L.) from the brewing industry were screened, and several compounds were detected as potential chemopreventive agents. Two of these electrophilic hops constituents were identified as xanthohumol and Xanthohumol D. In a subsequent cell-based assay, xanthohumol and Xanthohumol D were confirmed to be potent inducers of quinone reductase, and reaction with Keap1 was also confirmed. Therefore, this new mass spectrometric screening assay was demonstrated to facilitate the discovery of chemoprevention agents in complex natural product mixtures.