YukocitrineCAS# 145940-32-5 |
Quality Control & MSDS
Number of papers citing our products
Chemical structure
3D structure
Cas No. | 145940-32-5 | SDF | Download SDF |
PubChem ID | 15286417 | Appearance | Yellow powder |
Formula | C19H17NO4 | M.Wt | 323.3 |
Type of Compound | Alkaloids | Storage | Desiccate at -20°C |
Solubility | Soluble in Chloroform,Dichloromethane,Ethyl Acetate,DMSO,Acetone,etc. | ||
Chemical Name | 5,10-dihydroxy-2,2,11-trimethylpyrano[3,2-b]acridin-6-one | ||
SMILES | CC1(C=CC2=C(O1)C=C3C(=C2O)C(=O)C4=C(N3C)C(=CC=C4)O)C | ||
Standard InChIKey | NNIKUZXYORWVJA-UHFFFAOYSA-N | ||
Standard InChI | InChI=1S/C19H17NO4/c1-19(2)8-7-10-14(24-19)9-12-15(17(10)22)18(23)11-5-4-6-13(21)16(11)20(12)3/h4-9,21-22H,1-3H3 | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
Yukocitrine Dilution Calculator
Yukocitrine Molarity Calculator
1 mg | 5 mg | 10 mg | 20 mg | 25 mg | |
1 mM | 3.0931 mL | 15.4655 mL | 30.931 mL | 61.862 mL | 77.3276 mL |
5 mM | 0.6186 mL | 3.0931 mL | 6.1862 mL | 12.3724 mL | 15.4655 mL |
10 mM | 0.3093 mL | 1.5466 mL | 3.0931 mL | 6.1862 mL | 7.7328 mL |
50 mM | 0.0619 mL | 0.3093 mL | 0.6186 mL | 1.2372 mL | 1.5466 mL |
100 mM | 0.0309 mL | 0.1547 mL | 0.3093 mL | 0.6186 mL | 0.7733 mL |
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations. |
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
- Adenostemmoic acid D
Catalog No.:BCN9719
CAS No.:130217-20-8
- Hortiamide
Catalog No.:BCN9718
CAS No.:106055-13-4
- Adenostemmoic acid B
Catalog No.:BCN9717
CAS No.:130217-16-2
- Blestriarene C
Catalog No.:BCN9716
CAS No.:120090-81-5
- 5,6,4'-Trihydroxy-3,7-dimethoxyflavone
Catalog No.:BCN9715
CAS No.:56226-95-0
- Isodihydrocadambine
Catalog No.:BCN9714
CAS No.:55624-02-7
- 4'-O-Methyllariciresinol
Catalog No.:BCN9713
CAS No.:73354-09-3
- Aculeatin
Catalog No.:BCN9712
CAS No.:77636-05-6
- Isooxoflaccidin
Catalog No.:BCN9711
CAS No.:135010-50-3
- Inophyllum E
Catalog No.:BCN9710
CAS No.:17312-31-1
- Liquiridiolic acid
Catalog No.:BCN9709
CAS No.:20528-70-5
- Alaternin
Catalog No.:BCN9708
CAS No.:641-90-7
- N-Methoxy-3-hydroxymethylcarbazole
Catalog No.:BCN9721
CAS No.:142768-49-8
- N-Methoxy-3-formylcarbazole
Catalog No.:BCN9722
CAS No.:117592-01-5
- O-Methylmurrayamine A
Catalog No.:BCN9723
CAS No.:134779-20-7
- Stephodeline
Catalog No.:BCN9724
CAS No.:56596-12-4
- Rossicaside B
Catalog No.:BCN9725
CAS No.:80458-55-5
- Pumiloside
Catalog No.:BCN9726
CAS No.:126722-26-7
- Phyllanthurinolactone
Catalog No.:BCN9727
CAS No.:168180-12-9
- Artanomaloide
Catalog No.:BCN9728
CAS No.:112823-41-3
- 4-(2,6,6-Trimethyl-1-cyclohexenyl)-3-buten-2-one
Catalog No.:BCN9909
CAS No.:79-77-6
- 11-Oxomogroside IIIE
Catalog No.:BCN9730
CAS No.:2096516-68-4
- Rauhimbine
Catalog No.:BCN9731
CAS No.:66634-44-4
- Carvacryl acetate
Catalog No.:BCN9732
CAS No.:6380-28-5
Anti-leishmanial activity of plant-derived acridones, flavaglines, and sulfur-containing amides.[Pubmed:21417924]
Vector Borne Zoonotic Dis. 2011 Jul;11(7):793-8.
Visceral and cutaneous leishmaniases are an important public health problem in endemic geographic regions in 88 countries worldwide, with around 12 million infected people. Treatment options are limited due to toxicity and teratogenicity of the available drugs, response problems in HIV/Leishmania co-infections, and upcoming resistances. In this study, we investigated the anti-leishmanial activity of 13 plant-derived compounds in vitro aiming to find new drug candidates. Toxicity of the compounds was evaluated in human primary hepatocytes, and hemolytic activity was examined in freshly isolated erythrocytes. Two acridones, 5-hydroxynoracronycine and Yukocitrine, two flavaglines, aglafoline and rocaglamide, and the sulfur-containing amide methyldambullin showed promising anti-leishmanial activities with 50% effective concentrations (EC50s) of 34.84, 29.76, 7.45, 16.45, and 6.29 muM, respectively. Hepatotoxic activities of 5-hydroxynoracronycine, Yukocitrine, and methyldambullin were significantly lower compared to miltefosine and lower or equal compared to artesunate, whereas the ones of rocaglamide and aglafoline were slightly higher compared to miltefosine and significantly higher compared to artesunate. None of the compounds showed hemolytic activity.
Potential anti-allergic acridone alkaloids from the roots of Atalantia monophylla.[Pubmed:18817938]
Phytochemistry. 2008 Oct;69(14):2616-20.
Acridone alkaloids, cycloatalaphylline-A (1), N-methylcyclo-atalaphylline-A (2) and N-methylbuxifoliadine-E (3), were isolated from the dichloromethane and acetone extracts of the root of Atalantia monophylla along with eight known acridone alkaloids: buxifoliadine-A (4), buxifoliadine-E (5), N-methylatalaphylline (6), atalaphylline (7), citrusinine-I (8), N-methylataphyllinine (9), Yukocitrine (10) and junosine (11) and two known coumarins: auraptene (12) and 7-O-geranylscopoletin (13). Their structures were elucidated on the basis of spectroscopic analyses. Compounds 2, 5 and 8 possessed appreciable anti-allergic activity in RBL-2H3 cells model with IC(50) values of 40.1, 6.1 and 18.7 microM, respectively.