4,4'-Bis(N-carbazolyl)-1,1'-biphenylCAS# 58328-31-7 |
Quality Control & MSDS
Number of papers citing our products
Chemical structure
3D structure
Cas No. | 58328-31-7 | SDF | Download SDF |
PubChem ID | 11248716 | Appearance | Powder |
Formula | C36H24N2 | M.Wt | 484.6 |
Type of Compound | N/A | Storage | Desiccate at -20°C |
Solubility | Soluble in Chloroform,Dichloromethane,Ethyl Acetate,DMSO,Acetone,etc. | ||
Chemical Name | 9-[4-(4-carbazol-9-ylphenyl)phenyl]carbazole | ||
SMILES | C1=CC=C2C(=C1)C3=CC=CC=C3N2C4=CC=C(C=C4)C5=CC=C(C=C5)N6C7=CC=CC=C7C8=CC=CC=C86 | ||
Standard InChIKey | VFUDMQLBKNMONU-UHFFFAOYSA-N | ||
Standard InChI | InChI=1S/C36H24N2/c1-5-13-33-29(9-1)30-10-2-6-14-34(30)37(33)27-21-17-25(18-22-27)26-19-23-28(24-20-26)38-35-15-7-3-11-31(35)32-12-4-8-16-36(32)38/h1-24H | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
4,4'-Bis(N-carbazolyl)-1,1'-biphenyl Dilution Calculator
4,4'-Bis(N-carbazolyl)-1,1'-biphenyl Molarity Calculator
1 mg | 5 mg | 10 mg | 20 mg | 25 mg | |
1 mM | 2.0636 mL | 10.3178 mL | 20.6356 mL | 41.2712 mL | 51.5889 mL |
5 mM | 0.4127 mL | 2.0636 mL | 4.1271 mL | 8.2542 mL | 10.3178 mL |
10 mM | 0.2064 mL | 1.0318 mL | 2.0636 mL | 4.1271 mL | 5.1589 mL |
50 mM | 0.0413 mL | 0.2064 mL | 0.4127 mL | 0.8254 mL | 1.0318 mL |
100 mM | 0.0206 mL | 0.1032 mL | 0.2064 mL | 0.4127 mL | 0.5159 mL |
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations. |
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
- Saikosaponin B3
Catalog No.:BCN8178
CAS No.:58316-42-0
- Saikosaponin B2
Catalog No.:BCN5916
CAS No.:58316-41-9
- Kusunokinin
Catalog No.:BCN3226
CAS No.:58311-20-9
- Nanaomycin C
Catalog No.:BCC4016
CAS No.:58286-55-8
- Kakkalide
Catalog No.:BCN8263
CAS No.:58274-56-9
- ICA 069673
Catalog No.:BCC7911
CAS No.:582323-16-8
- BMS265246
Catalog No.:BCC3741
CAS No.:582315-72-8
- Betulin palmitate
Catalog No.:BCN5792
CAS No.:582315-55-7
- Tetraethyl ranelate
Catalog No.:BCC9177
CAS No.:58194-26-6
- H-DL-Ser-OMe.HCl
Catalog No.:BCC3100
CAS No.:5819-04-5
- Idebenone
Catalog No.:BCC4913
CAS No.:58186-27-9
- Ethyl 5-amino-4-cyano-3-(2-ethoxy-2-oxoethyl)thiophene-2-carboxylate
Catalog No.:BCC8975
CAS No.:58168-20-0
- Isopimaric acid
Catalog No.:BCN4618
CAS No.:5835-26-7
- DL-Demethylcoclaurine
Catalog No.:BCC8317
CAS No.:5843-65-2
- Dihydroresveratrol
Catalog No.:BCN5793
CAS No.:58436-28-5
- H-2-Nal-OH.HCl
Catalog No.:BCC3287
CAS No.:58438-03-2
- Boc-2-Nal-OH
Catalog No.:BCC3289
CAS No.:58438-04-3
- Angiotensin 1/2 (1-5)
Catalog No.:BCC1035
CAS No.:58442-64-1
- H-D-Leu-OMe.HCl
Catalog No.:BCC2681
CAS No.:5845-53-4
- N-(2-Hydroxy-4-methoxyphenyl)acetamide
Catalog No.:BCN1409
CAS No.:58469-06-0
- Darlingine
Catalog No.:BCN1906
CAS No.:58471-10-6
- Ferrugine
Catalog No.:BCN1910
CAS No.:58471-11-7
- Platycodin D
Catalog No.:BCN4982
CAS No.:58479-68-8
- Lemannine
Catalog No.:BCN3742
CAS No.:58480-54-9
Investigation of the Charge Balance in Green Phosphorescent Organic Light-Emitting Diodes by Controlling the Mixed Host Emission Layer.[Pubmed:29677715]
J Nanosci Nanotechnol. 2018 Sep 1;18(9):5908-5912.
In this paper, we investigated the use of a mixed host emission layer (MH-EML) in green phosphorescent organic light-emitting diodes (OLEDs). The hole transport type (p-type) material (4,4'-Bis(N-carbazolyl)-1,1'-biphenyl (CBP)) and electron transport type (N-type) material (2,2',2''-(1,3,5-Benzinetriyl)-tris(1-phenyl-1-H-benzimidazole) (TPBi)) were mixed with different ratios. The electrons were easily injected through the lowest unoccupied molecular orbital (LUMO) of TPBi in the mixed host system. Also, holes were confined in the EML because of the deep highest occupied molecular orbital (HOMO) level of TPBi (6.7 eV). These results indicate that excitons were formed effectively and the recombination zone became wider under a high electric field in MH-EML devices. For these reasons, the lifetime of the MH-OLED device was 1.36 times higher than that of a single host emission layer (SH-EML) device and showed a reduction in Joule heating. Finally, the external quantum efficiency (EQE) roll-off ratio from 1 mA/cm2 to 100 mA/cm2 in the optimized device (30.46%) was 18.12%p lower than that of the SH-EML (48.58%).