Isopimaric acidCAS# 5835-26-7 |
2D Structure
Quality Control & MSDS
3D structure
Package In Stock
Number of papers citing our products
Cas No. | 5835-26-7 | SDF | Download SDF |
PubChem ID | 442048 | Appearance | Powder |
Formula | C20H30O2 | M.Wt | 302.46 |
Type of Compound | Diterpenoids | Storage | Desiccate at -20°C |
Solubility | Soluble in Chloroform,Dichloromethane,Ethyl Acetate,DMSO,Acetone,etc. | ||
Chemical Name | (1R,4aR,4bS,7S,10aR)-7-ethenyl-1,4a,7-trimethyl-3,4,4b,5,6,8,10,10a-octahydro-2H-phenanthrene-1-carboxylic acid | ||
SMILES | CC1(CCC2C(=CCC3C2(CCCC3(C)C(=O)O)C)C1)C=C | ||
Standard InChIKey | MXYATHGRPJZBNA-KRFUXDQASA-N | ||
Standard InChI | InChI=1S/C20H30O2/c1-5-18(2)12-9-15-14(13-18)7-8-16-19(15,3)10-6-11-20(16,4)17(21)22/h5,7,15-16H,1,6,8-13H2,2-4H3,(H,21,22)/t15-,16+,18-,19+,20+/m0/s1 | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
Description | 1. Isopimaric acid is active against MDR and MRSA strains of S. aureus which are becoming increasingly resistant to antibiotics, the minimum inhibitory concentrations (MIC) are 32-64 microg/mL . 2. Isopimaric acid is also possible that an antagonistic interaction with reserpine may render the antibiotics inactive. |
Targets | Antifection |
Isopimaric acid Dilution Calculator
Isopimaric acid Molarity Calculator
1 mg | 5 mg | 10 mg | 20 mg | 25 mg | |
1 mM | 3.3062 mL | 16.5311 mL | 33.0622 mL | 66.1244 mL | 82.6556 mL |
5 mM | 0.6612 mL | 3.3062 mL | 6.6124 mL | 13.2249 mL | 16.5311 mL |
10 mM | 0.3306 mL | 1.6531 mL | 3.3062 mL | 6.6124 mL | 8.2656 mL |
50 mM | 0.0661 mL | 0.3306 mL | 0.6612 mL | 1.3225 mL | 1.6531 mL |
100 mM | 0.0331 mL | 0.1653 mL | 0.3306 mL | 0.6612 mL | 0.8266 mL |
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations. |
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
- 4,4'-Bis(N-carbazolyl)-1,1'-biphenyl
Catalog No.:BCC8660
CAS No.:58328-31-7
- Saikosaponin B3
Catalog No.:BCN8178
CAS No.:58316-42-0
- Saikosaponin B2
Catalog No.:BCN5916
CAS No.:58316-41-9
- Kusunokinin
Catalog No.:BCN3226
CAS No.:58311-20-9
- Nanaomycin C
Catalog No.:BCC4016
CAS No.:58286-55-8
- Kakkalide
Catalog No.:BCN8263
CAS No.:58274-56-9
- ICA 069673
Catalog No.:BCC7911
CAS No.:582323-16-8
- BMS265246
Catalog No.:BCC3741
CAS No.:582315-72-8
- Betulin palmitate
Catalog No.:BCN5792
CAS No.:582315-55-7
- Tetraethyl ranelate
Catalog No.:BCC9177
CAS No.:58194-26-6
- H-DL-Ser-OMe.HCl
Catalog No.:BCC3100
CAS No.:5819-04-5
- Idebenone
Catalog No.:BCC4913
CAS No.:58186-27-9
- DL-Demethylcoclaurine
Catalog No.:BCC8317
CAS No.:5843-65-2
- Dihydroresveratrol
Catalog No.:BCN5793
CAS No.:58436-28-5
- H-2-Nal-OH.HCl
Catalog No.:BCC3287
CAS No.:58438-03-2
- Boc-2-Nal-OH
Catalog No.:BCC3289
CAS No.:58438-04-3
- Angiotensin 1/2 (1-5)
Catalog No.:BCC1035
CAS No.:58442-64-1
- H-D-Leu-OMe.HCl
Catalog No.:BCC2681
CAS No.:5845-53-4
- N-(2-Hydroxy-4-methoxyphenyl)acetamide
Catalog No.:BCN1409
CAS No.:58469-06-0
- Darlingine
Catalog No.:BCN1906
CAS No.:58471-10-6
- Ferrugine
Catalog No.:BCN1910
CAS No.:58471-11-7
- Platycodin D
Catalog No.:BCN4982
CAS No.:58479-68-8
- Lemannine
Catalog No.:BCN3742
CAS No.:58480-54-9
- Olvanil
Catalog No.:BCC6855
CAS No.:58493-49-5
Isopimaric acid from Pinus nigra shows activity against multidrug-resistant and EMRSA strains of Staphylococcus aureus.[Pubmed:16114093]
Phytother Res. 2005 Jun;19(6):538-42.
The diterpene Isopimaric acid was extracted from the immature cones of Pinus nigra (Arnold) using bioassay-guided fractionation of a crude hexane extract. Isopimaric acid was assayed against multidrug-resistant (MDR) and methicillin-resistant Staphylococcus aureus (MRSA). The minimum inhibitory concentrations (MIC) were 32-64 microg/mL and compared with a commercially obtained resin acid, abietic acid, with MICs of 64 microg/mL. Resin acids are known to have antibacterial activity and are valued in traditional medicine for their antiseptic properties. These results show that Isopimaric acid is active against MDR and MRSA strains of S. aureus which are becoming increasingly resistant to antibiotics. Both compounds were evaluated for modulation activity in combination with antibiotics, but did not potentiate the activity of the antibiotics tested. However, the compounds were also assayed in combination with the efflux pump inhibitor reserpine, to see if inhibition of the TetK or NorA efflux pump increased their activity. Interestingly, rather than a potentiation of activity by a reduction in MIC, a two to four-fold increase in MIC was seen. It may be that Isopimaric acid and abietic acid are not substrates for these efflux pumps, but it is also possible that an antagonistic interaction with reserpine may render the antibiotics inactive. 1H-NMR of abietic acid and reserpine taken individually and in combination, revealed a shift in resonance of some peaks for both compounds when mixed together compared with the spectra of the compounds on their own. It is proposed that this may be due to complex formation between abietic acid and reserpine and that this complex formation is responsible for a reduction in activity and elevation of MIC.