4-P-PDOTCAS# 134865-74-0 |
- Verteporfin
Catalog No.:BCC3690
CAS No.:129497-78-5
- Methylcobalamin
Catalog No.:BCC5188
CAS No.:13422-55-4
- Miglustat hydrochloride
Catalog No.:BCC5186
CAS No.:210110-90-0
- Amifampridine
Catalog No.:BCC5185
CAS No.:54-96-6
- Miglustat
Catalog No.:BCC5187
CAS No.:72599-27-0
Quality Control & MSDS
Number of papers citing our products
Chemical structure
3D structure
Cas No. | 134865-74-0 | SDF | Download SDF |
PubChem ID | 3976006 | Appearance | Powder |
Formula | C19H21NO | M.Wt | 279.38 |
Type of Compound | N/A | Storage | Desiccate at -20°C |
Solubility | Soluble in DMSO > 10 mM | ||
Chemical Name | N-(4-phenyl-1,2,3,4-tetrahydronaphthalen-2-yl)propanamide | ||
SMILES | CCC(=O)NC1CC(C2=CC=CC=C2C1)C3=CC=CC=C3 | ||
Standard InChIKey | RCYLUNPFECYGDW-UHFFFAOYSA-N | ||
Standard InChI | InChI=1S/C19H21NO/c1-2-19(21)20-16-12-15-10-6-7-11-17(15)18(13-16)14-8-4-3-5-9-14/h3-11,16,18H,2,12-13H2,1H3,(H,20,21) | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
4-P-PDOT Dilution Calculator
4-P-PDOT Molarity Calculator
1 mg | 5 mg | 10 mg | 20 mg | 25 mg | |
1 mM | 3.5794 mL | 17.8968 mL | 35.7935 mL | 71.5871 mL | 89.4839 mL |
5 mM | 0.7159 mL | 3.5794 mL | 7.1587 mL | 14.3174 mL | 17.8968 mL |
10 mM | 0.3579 mL | 1.7897 mL | 3.5794 mL | 7.1587 mL | 8.9484 mL |
50 mM | 0.0716 mL | 0.3579 mL | 0.7159 mL | 1.4317 mL | 1.7897 mL |
100 mM | 0.0358 mL | 0.179 mL | 0.3579 mL | 0.7159 mL | 0.8948 mL |
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations. |
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
- 8-M-PDOT
Catalog No.:BCC6901
CAS No.:134865-70-6
- 6''-O-Acetylglycitin
Catalog No.:BCN3866
CAS No.:134859-96-4
- A 412997 dihydrochloride
Catalog No.:BCC6224
CAS No.:1347744-96-0
- Linderane
Catalog No.:BCN5023
CAS No.:13476-25-0
- Lamivudine
Catalog No.:BCC3801
CAS No.:134678-17-4
- GSK343
Catalog No.:BCC1607
CAS No.:1346704-33-3
- GSK621
Catalog No.:BCC6517
CAS No.:1346607-05-3
- GSK126
Catalog No.:BCC1604
CAS No.:1346574-57-9
- GSK503
Catalog No.:BCC6386
CAS No.:1346572-63-1
- ML 240
Catalog No.:BCC5604
CAS No.:1346527-98-7
- Zinc Pyrithione
Catalog No.:BCC5008
CAS No.:13463-41-7
- Eriocitrin
Catalog No.:BCN1208
CAS No.:13463-28-0
- SAR245409
Catalog No.:BCC2534
CAS No.:934493-76-2
- Taccalonolide AJ
Catalog No.:BCN2971
CAS No.:1349904-82-0
- 2,2'-Dithiobisbenzanilide
Catalog No.:BCC8497
CAS No.:135-57-9
- Pseudotropine
Catalog No.:BCN1932
CAS No.:135-97-7
- Z-Hyp-OH
Catalog No.:BCC3257
CAS No.:13504-85-3
- Clopidogrel bisulfate
Catalog No.:BCC8917
CAS No.:135046-48-9
- MK-5172 hydrate
Catalog No.:BCC1763
CAS No.:1350462-55-3
- MK-5172
Catalog No.:BCC1762
CAS No.:1350514-68-9
- Repaglinide
Catalog No.:BCC2504
CAS No.:135062-02-1
- kb-NB77-78
Catalog No.:BCC5462
CAS No.:1350622-33-1
- Camelliaside A
Catalog No.:BCN3871
CAS No.:135095-52-2
- Fmoc-Nva-OH
Catalog No.:BCC3302
CAS No.:135112-28-6
An improved synthesis of cis-4-phenyl-2-propionamidotetralin (4-P-PDOT): a selective MT(2) melatonin receptor antagonist.[Pubmed:18075659]
Org Biomol Chem. 2008 Jan 7;6(1):147-50.
A novel, efficient and diastereoselective procedure was developed for the gram-scale synthesis of cis-4-phenyl-2-propionamidotetralin (4-P-PDOT), a selective MT(2) melatonin receptor antagonist. The synthetic strategy involved the conversion of 4-phenyl-2-tetralone to enamide followed by diastereoselective reduction affording cis-4-P-PDOT in good yield. The mechanism of the reduction step was explored by employing deuterated reagents.
The influence od melatonin receptors antagonists, luzindole and 4-phenyl-2-propionamidotetralin (4-P-PDOT), on melatonin-dependent vasopressin and adrenocorticotropic hormone (ACTH) release from the rat hypothalamo-hypophysial system. In vitro and in vivo studies.[Pubmed:25554981]
J Physiol Pharmacol. 2014 Dec;65(6):777-84.
Melatonin exerts its biological role acting via G protein-coupled membrane receptors - MT1 and MT2, as well as through cytoplasmic and/or nuclear receptors. Melatonin has previously been shown to change vasopressin (AVP) and adrenocorticotropic hormone (ACTH) secretion dependently on its concentration. To determine whether the response of vasopressinergic neurones to different concentrations of melatonin is mediated through the membrane MT1 and/or MT2 receptors, the influence of luzindole - an antagonist of both MT1 and MT2 receptors, and 4-phenyl-2-propionamidotetralin (4-P-PDOT) - a selective MT2 receptor antagonist, on melatonin-dependent AVP release from the rat hypothalamo-neurohypophysial (H-NH) system was studied in vitro (melatonin at the concentrations of 10(-9), 10(-7) and 10(-3) M) and in vivo (melatonin at the concentrations of 10(-9) and 10(-7) M). Moreover, the second goal of this study was to find out whether melatonin receptors MT1 and/or MT2 are involved in the regulation of ACTH and corticosterone secretion into the blood. We have demonstrated that melatonin, at the concentrations of 10(-9) and 10(-7) M, significantly inhibited AVP secretion from isolated rat H-NH explants when antagonists solvent (i.e. 0.1% DMSO) was present in the medium. Neither luzindole, nor 4-P-PDOT, applied without melatonin, did influence AVP release in vitro. Luzindole applied together with melatonin (10(-7) M and 10(-9) M) significantly suppressed melatonin-dependent effect, while 4-PPDOT did not eliminate the inhibitory influence of 10(-7) M and 10(-9) M melatonin on AVP secretion from isolated rat H-NH explants. Melatonin at a concentration of 10(-3) M significantly increased AVP release when the H-NH explants were incubated in the medium containing luzindole or 4-P-PDOT. Under present experimental in vivo conditions, infused intracerebroventricularly (i.c.v.) melatonin, at a concentration close to its physiological level in the blood, significantly diminished AVP secretion into the blood, however, at higher concentration (10(-7) M) it remained inactive in this process. Moreover, melatonin at both concentrations of 10(-9) M and 10(-7) M, was able to inhibit AVP secretion into the blood (and increase its neurohypophysial content) when animals were previously i.c.v. injected with 4-P-PDOT, but not with luzindole. Blood plasma concentration of ACTH was diminished significantly by 10(-7) M melatonin in DMSO-infused, but not in luzindole- or 4-P-PDOT-injected rats, however, it remained inactive in modifying the corticosterone blood plasma concentrations in any of the studied subgroups. The present study demonstrates that subtype MT1 membrane receptor may contribute to the inhibitory effect of physiological concentration of melatonin on functional regulation of vasopressinergic neurones in the rat. However, for the stimulatory effect of pharmacological dose of the hormone on AVP secretion in vitro, mechanisms different from membrane MT1/MT2 receptors are involved. The present experiment do not determines whether MT1 and/or MT2 receptors affect the function of the rat pituitary-adrenal cortex axis.