EriocitrinCAS# 13463-28-0 |
2D Structure
Quality Control & MSDS
3D structure
Package In Stock
Number of papers citing our products
Cas No. | 13463-28-0 | SDF | Download SDF |
PubChem ID | 83489 | Appearance | White powder |
Formula | C27H32O15 | M.Wt | 596.53 |
Type of Compound | Flavonoids | Storage | Desiccate at -20°C |
Synonyms | Eriodictioside; Eriodictyol 7-O-rutinoside; 3',4',5,7-Tetrahydroxyflavanone 7-rutinoside | ||
Solubility | DMSO : 125 mg/mL (209.55 mM; Need ultrasonic) | ||
Chemical Name | (2S)-2-(3,4-dihydroxyphenyl)-5-hydroxy-7-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-[[(2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxymethyl]oxan-2-yl]oxy-2,3-dihydrochromen-4-one | ||
SMILES | CC1C(C(C(C(O1)OCC2C(C(C(C(O2)OC3=CC(=C4C(=O)CC(OC4=C3)C5=CC(=C(C=C5)O)O)O)O)O)O)O)O)O | ||
Standard InChIKey | OMQADRGFMLGFJF-MNPJBKLOSA-N | ||
Standard InChI | InChI=1S/C27H32O15/c1-9-20(32)22(34)24(36)26(39-9)38-8-18-21(33)23(35)25(37)27(42-18)40-11-5-14(30)19-15(31)7-16(41-17(19)6-11)10-2-3-12(28)13(29)4-10/h2-6,9,16,18,20-30,32-37H,7-8H2,1H3/t9-,16-,18+,20-,21+,22+,23-,24+,25+,26+,27+/m0/s1 | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
Description | Eriocitrin is powerful antioxidative flavonoid, it can prevent oxidative damages caused by acute exercise-induced oxidative stress, it also has lipid-lowering effect in rats on a high-fat and high-cholesterol diet. Eriocitrin is a potent inhibitor of human carbonic anhydrase VA isozyme. |
Targets | LDL | ATP synthase |
In vitro | Lipid-Lowering Effect of Eriocitrin, the Main Flavonoid in Lemon Fruit, in Rats on a High-Fat and High-Cholesterol Diet[Reference: WebLink]J. Food Sci., 2006, 71(71):S633–S7.Eriocitrin (eriodictyol 7-O-β-rutinoside) is the main flavonoid in lemon fruit.
|
In vivo | Eriocitrin ameliorates diet-induced hepatic steatosis with activation of mitochondrial biogenesis.[Pubmed: 24424211]Sci Rep. 2014 Jan 15;4:3708.Lemon (Citrus limon) contains various bioactive flavonoids, and prevents obesity and obesity-associated metabolic diseases. We focused on Eriocitrin (eriodictyol 7-rutinoside), a powerful antioxidative flavonoid in lemon with lipid-lowering effects in a rat model of high-fat diet.
Identification and antioxidant activity of flavonoid metabolites in plasma and urine of eriocitrin-treated rats.[Pubmed: 10956094]J Agric Food Chem. 2000 Aug;48(8):3217-24.
Eriocitrin, a flavonoid glycoside present in lemon fruit, is metabolized in vivo to a series of eriodictyol, methylated eriodictyol, 3,4-dihydroxyhydrocinnamic acid, and their conjugates.
|
Kinase Assay | Eriocitrin and Apigenin as New Carbonic Anhydrase VA Inhibitors from a Virtual Screening of Calabrian Natural Products.[Pubmed: 25590364]Planta Med. 2015 Apr;81(6):533-40.
|
Animal Research | Lemon flavonoid, eriocitrin, suppresses exercise-induced oxidative damage in rat liver.[Pubmed: 12551749]Life Sci. 2003 Feb 21;72(14):1609-16.
|
Eriocitrin Dilution Calculator
Eriocitrin Molarity Calculator
1 mg | 5 mg | 10 mg | 20 mg | 25 mg | |
1 mM | 1.6764 mL | 8.3818 mL | 16.7636 mL | 33.5272 mL | 41.909 mL |
5 mM | 0.3353 mL | 1.6764 mL | 3.3527 mL | 6.7054 mL | 8.3818 mL |
10 mM | 0.1676 mL | 0.8382 mL | 1.6764 mL | 3.3527 mL | 4.1909 mL |
50 mM | 0.0335 mL | 0.1676 mL | 0.3353 mL | 0.6705 mL | 0.8382 mL |
100 mM | 0.0168 mL | 0.0838 mL | 0.1676 mL | 0.3353 mL | 0.4191 mL |
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations. |
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
- Stavudine sodium
Catalog No.:BCC4263
CAS No.:134624-73-0
- ML 218 hydrochloride
Catalog No.:BCC6207
CAS No.:1346233-68-8
- SA 57
Catalog No.:BCC6280
CAS No.:1346169-63-8
- Planchol E
Catalog No.:BCN6882
CAS No.:1346137-02-7
- LY2795050
Catalog No.:BCC1719
CAS No.:1346133-08-1
- ML 154
Catalog No.:BCC8022
CAS No.:1345964-89-7
- 5,7-Di-O-methylquercetin
Catalog No.:BCN3386
CAS No.:13459-07-9
- CYM 50308
Catalog No.:BCC6260
CAS No.:1345858-76-5
- Altiratinib
Catalog No.:BCC6385
CAS No.:1345847-93-9
- Arginase inhibitor 1
Catalog No.:BCC4034
CAS No.:1345808-25-4
- ETP-46464
Catalog No.:BCC3913
CAS No.:1345675-02-6
- AM095
Catalog No.:BCC1351
CAS No.:1345614-59-6
- Zinc Pyrithione
Catalog No.:BCC5008
CAS No.:13463-41-7
- ML 240
Catalog No.:BCC5604
CAS No.:1346527-98-7
- GSK503
Catalog No.:BCC6386
CAS No.:1346572-63-1
- GSK126
Catalog No.:BCC1604
CAS No.:1346574-57-9
- GSK621
Catalog No.:BCC6517
CAS No.:1346607-05-3
- GSK343
Catalog No.:BCC1607
CAS No.:1346704-33-3
- Lamivudine
Catalog No.:BCC3801
CAS No.:134678-17-4
- Linderane
Catalog No.:BCN5023
CAS No.:13476-25-0
- A 412997 dihydrochloride
Catalog No.:BCC6224
CAS No.:1347744-96-0
- 6''-O-Acetylglycitin
Catalog No.:BCN3866
CAS No.:134859-96-4
- 8-M-PDOT
Catalog No.:BCC6901
CAS No.:134865-70-6
- 4-P-PDOT
Catalog No.:BCC6900
CAS No.:134865-74-0
Lemon flavonoid, eriocitrin, suppresses exercise-induced oxidative damage in rat liver.[Pubmed:12551749]
Life Sci. 2003 Feb 21;72(14):1609-16.
To examine the preventive effect of the lemon flavonoid, Eriocitrin (eriodictyol 7-O-rutinoside), on oxidative stress during acute exercise in vivo, levels of N( epsilon )- (hexanoyl)lysine, HEL; o,o-dityrosine, DT; and nitrotyrosine, NT, as oxidative stress markers, were determined by ELISA in livers of trained rats in addition to thiobarbituric acid-reactive substance (TBARS). Eriocitrin administration prior to exercise significantly suppressed the increases in TBARS caused by lipid peroxidation during acute exercise. The contents of HEL, DT, and NT in rat liver increased dramatically by exercise without Eriocitrin administration. However, these increases were significantly suppressed by Eriocitrin administration before exercise. Moreover, in this study, to clarify whether Eriocitrin influences glutathione metabolite system that is considered to be important for a defense against the damage by oxidative stress, the levels of glutathione in rat liver were determined during exercise. The level of reduced glutathione after exercise was maintained by administration of Eriocitrin. The increase in the concentration of oxidized glutathione caused by exercise was significantly suppressed by Eriocitrin. This result suggested that Eriocitrin might play an important role in the control of the change in glutathione redox status in rat liver during exercise. These findings showed that Eriocitrin was effective in the prevention of oxidative damages caused by acute exercise-induced oxidative stress.
Eriocitrin ameliorates diet-induced hepatic steatosis with activation of mitochondrial biogenesis.[Pubmed:24424211]
Sci Rep. 2014 Jan 15;4:3708.
Lemon (Citrus limon) contains various bioactive flavonoids, and prevents obesity and obesity-associated metabolic diseases. We focused on Eriocitrin (eriodictyol 7-rutinoside), a powerful antioxidative flavonoid in lemon with lipid-lowering effects in a rat model of high-fat diet. To investigate the mechanism of action of Eriocitrin, we conducted feeding experiments on zebrafish with diet-induced obesity. Oral administration of Eriocitrin (32 mg/kg/day for 28 days) improved dyslipidaemia and decreased lipid droplets in the liver. DNA microarray analysis revealed that Eriocitrin increased mRNA of mitochondrial biogenesis genes, such as mitochondria transcription factor, nuclear respiratory factor 1, cytochrome c oxidase subunit 4, and ATP synthase. In HepG2 cells, Eriocitrin also induced the corresponding orthologues, and reduced lipid accumulation under conditions of lipid loading. Eriocitrin increased mitochondrial size and mtDNA content, which resulted in ATP production in HepG2 cells and zebrafish. In summary, dietary Eriocitrin ameliorates diet-induced hepatic steatosis with activation of mitochondrial biogenesis.
Identification and antioxidant activity of flavonoid metabolites in plasma and urine of eriocitrin-treated rats.[Pubmed:10956094]
J Agric Food Chem. 2000 Aug;48(8):3217-24.
Eriocitrin, a flavonoid glycoside present in lemon fruit, is metabolized in vivo to a series of eriodictyol, methylated eriodictyol, 3,4-dihydroxyhydrocinnamic acid, and their conjugates. Plasma antioxidant activity increased following oral administration of aqueous Eriocitrin solutions to rats. Eriocitrin metabolites were found in plasma and renal excreted urine through HPLC and LC-MS analyses. Eriocitrin was not detected in plasma and urine, but eriodictyol, homoeriodictyol, and hesperetin in their conjugated forms were detected in plasma of 4.0 h following administration of Eriocitrin. In urine for 24 h, both nonconjugates and conjugates of these metabolites were detected. 3,4-Dihydroxyhydrocinnamic acid, which is metabolized from eriodictyol by intestinal bacteria, was detected in slight amounts with each form in 4.0-h plasma and 24-h urine. Eriocitrin was suggested to be metabolized by intestinal bacteria, and then eriodictyol and 3,4-dihydroxyhydrocinnamic of its metabolite were absorbed. Following administration of Eriocitrin, plasma exhibited an elevated resistance effect to lipid peroxidation. Eriocitrin metabolites functioning as antioxidant agents are discussed.