Albaspidin AACAS# 3570-40-9 |
2D Structure
Quality Control & MSDS
3D structure
Package In Stock
Number of papers citing our products
Cas No. | 3570-40-9 | SDF | Download SDF |
PubChem ID | 14378646 | Appearance | Yellow powder |
Formula | C21H24O8 | M.Wt | 404.4 |
Type of Compound | Phenols | Storage | Desiccate at -20°C |
Solubility | Soluble in Chloroform,Dichloromethane,Ethyl Acetate,DMSO,Acetone,etc. | ||
Chemical Name | 2-acetyl-4-[(5-acetyl-2,6-dihydroxy-3,3-dimethyl-4-oxocyclohexa-1,5-dien-1-yl)methyl]-3,5-dihydroxy-6,6-dimethylcyclohexa-2,4-dien-1-one | ||
SMILES | CC(=O)C1=C(C(=C(C(C1=O)(C)C)O)CC2=C(C(C(=O)C(=C2O)C(=O)C)(C)C)O)O | ||
Standard InChIKey | OBCJMBQBESJUST-UHFFFAOYSA-N | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
Description | 1. Albaspidin AA displays strong antibacterial activity against the vegetative form of P. larvae (MIC ranging from 0.168-220 uM). 2. Albaspidins AA may have in vitro nematocidal activity against L4 stage larvae. |
Targets | Antifection |
Albaspidin AA Dilution Calculator
Albaspidin AA Molarity Calculator
1 mg | 5 mg | 10 mg | 20 mg | 25 mg | |
1 mM | 2.4728 mL | 12.364 mL | 24.728 mL | 49.456 mL | 61.82 mL |
5 mM | 0.4946 mL | 2.4728 mL | 4.9456 mL | 9.8912 mL | 12.364 mL |
10 mM | 0.2473 mL | 1.2364 mL | 2.4728 mL | 4.9456 mL | 6.182 mL |
50 mM | 0.0495 mL | 0.2473 mL | 0.4946 mL | 0.9891 mL | 1.2364 mL |
100 mM | 0.0247 mL | 0.1236 mL | 0.2473 mL | 0.4946 mL | 0.6182 mL |
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations. |
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
- Galantamine
Catalog No.:BCN2868
CAS No.:357-70-0
- Brucine
Catalog No.:BCN2390
CAS No.:357-57-3
- Naloxone HCl
Catalog No.:BCC4612
CAS No.:357-08-4
- Valerenic acid
Catalog No.:BCC7546
CAS No.:3569-10-6
- Questinol
Catalog No.:BCN7443
CAS No.:35688-09-6
- Dihydrobaicalein
Catalog No.:BCN3887
CAS No.:35683-17-1
- Deoxylapachol
Catalog No.:BCN5299
CAS No.:3568-90-9
- Fmoc-Leu-OH
Catalog No.:BCC3509
CAS No.:35661-60-0
- Fmoc-Phe-OH
Catalog No.:BCC3535
CAS No.:35661-40-6
- Fmoc-Ala-OH
Catalog No.:BCC3034
CAS No.:35661-39-3
- SB525334
Catalog No.:BCC2531
CAS No.:356559-20-1
- SB-505124 hydrochloride
Catalog No.:BCC1930
CAS No.:356559-13-2
- Moslosooflavone
Catalog No.:BCN5301
CAS No.:3570-62-5
- Pemetrexed disodium hemipenta hydrate
Catalog No.:BCC1844
CAS No.:357166-30-4
- Tropanyl trans-cinnamate
Catalog No.:BCN1931
CAS No.:35721-92-7
- BMS-378806
Catalog No.:BCC4505
CAS No.:357263-13-9
- Hygrophylline
Catalog No.:BCN2116
CAS No.:3573-82-8
- Cynaropicrin
Catalog No.:BCC8161
CAS No.:35730-78-0
- Brivaracetam
Catalog No.:BCC5497
CAS No.:357336-20-0
- Fmoc-ß-Ala-OH
Catalog No.:BCC3038
CAS No.:35737-10-1
- Fmoc-Trp-OH
Catalog No.:BCC3556
CAS No.:35737-15-6
- 3beta-Acetoxy-11alpha,12alpha-epoxyoleanan-28,13beta-olide
Catalog No.:BCN6664
CAS No.:35738-25-1
- Oxyimperatorin
Catalog No.:BCN2736
CAS No.:35740-18-2
- NNC 55-0396
Catalog No.:BCC1803
CAS No.:357400-13-6
In vitro growth inhibition by Hypericum extracts and isolated pure compounds of Paenibacillus larvae, a lethal disease affecting honeybees worldwide.[Pubmed:24827680]
Chem Biodivers. 2014 May;11(5):695-708.
The in vitro inhibitory potential of 50 extracts from various species of the flowering plant genus Hypericum was investigated using the Kirby-Bauer disk diffusion susceptibility test against Paenibacillus larvae, a spore-forming, Gram-positive bacterial pathogen that causes American foulbrood (AFB), a lethal disease affecting honeybee brood worldwide. Of the tested extracts, 14 were identified as highly active against P. larvae as compared to the activity of the positive control, indicating the presence of highly potent antibacterial compounds in the extracts. Examination of these extracts using TLC and HPLC/MS analyses revealed the presence of acylphloroglucinol and filicinic-acid derivatives. Six pure compounds isolated from these extracts, viz., hyperforin (1), uliginosin B (2), uliginosin A (3), 7-epiclusianone (4), Albaspidin AA (5), and drummondin E (6), displayed strong antibacterial activity against the vegetative form of P. larvae (MIC ranging from 0.168-220 muM). Incubation of P. larvae spores with the lipophilic extract of Hypericum perforatum and its main acylphloroglucinol constituent 1 led to the observation of significantly fewer colony forming units as compared to the negative control, indicating that the acylphloroglucinol scaffold represents an interesting lead structure for the development of new AFB control agents.