AtranorinCAS# 479-20-9 |
Quality Control & MSDS
Number of papers citing our products
Chemical structure
3D structure
Cas No. | 479-20-9 | SDF | Download SDF |
PubChem ID | 68066 | Appearance | White powder |
Formula | C19H18O8 | M.Wt | 374.4 |
Type of Compound | Phenols | Storage | Desiccate at -20°C |
Synonyms | Atranoric acid; Parmelin; Parmelin acid; Usnarin; Usnarin acid | ||
Solubility | Soluble in methanol; insoluble in water | ||
Chemical Name | (3-hydroxy-4-methoxycarbonyl-2,5-dimethylphenyl) 3-formyl-2,4-dihydroxy-6-methylbenzoate | ||
SMILES | CC1=CC(=C(C(=C1C(=O)OC2=C(C(=C(C(=C2)C)C(=O)OC)O)C)O)C=O)O | ||
Standard InChIKey | YLOYKYXNDHOHHT-UHFFFAOYSA-N | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
Description | 1. Atranorin shows significant antinociceptive and antiinflammatory activity. 2. Atranorin has a relevant redox-active action, acting as a pro-oxidant or antioxidant agent depending on the radical, also, it will exert cytoprotective effects on cells under oxidative stress induced by H(2)O(2). 3. Atranorin has suppression of viability and proliferation in tumour cell lines. |
Targets | NO |
Atranorin Dilution Calculator
Atranorin Molarity Calculator
1 mg | 5 mg | 10 mg | 20 mg | 25 mg | |
1 mM | 2.6709 mL | 13.3547 mL | 26.7094 mL | 53.4188 mL | 66.7735 mL |
5 mM | 0.5342 mL | 2.6709 mL | 5.3419 mL | 10.6838 mL | 13.3547 mL |
10 mM | 0.2671 mL | 1.3355 mL | 2.6709 mL | 5.3419 mL | 6.6774 mL |
50 mM | 0.0534 mL | 0.2671 mL | 0.5342 mL | 1.0684 mL | 1.3355 mL |
100 mM | 0.0267 mL | 0.1335 mL | 0.2671 mL | 0.5342 mL | 0.6677 mL |
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations. |
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
- Dyphylline
Catalog No.:BCC2297
CAS No.:479-18-5
- Coumestrol
Catalog No.:BCN3949
CAS No.:479-13-0
- Calcium-Sensing Receptor Antagonists I
Catalog No.:BCC1448
CAS No.:478963-79-0
- Angiotensin 1/2 (1-6)
Catalog No.:BCC1036
CAS No.:47896-63-9
- Zopfiellamide A
Catalog No.:BCN1865
CAS No.:478945-64-1
- Kisspeptin 10 (rat)
Catalog No.:BCC6132
CAS No.:478507-53-8
- CP 339818 hydrochloride
Catalog No.:BCC7048
CAS No.:478341-55-8
- ISO-1
Catalog No.:BCC5427
CAS No.:478336-92-4
- 4-Hydroxymethylphenol 1-O-rhamnoside
Catalog No.:BCN7750
CAS No.:478314-67-9
- Gabapentin enacarbil
Catalog No.:BCC4239
CAS No.:478296-72-9
- R-1479
Catalog No.:BCC1878
CAS No.:478182-28-4
- Isoerysenegalensein E
Catalog No.:BCN3978
CAS No.:478158-77-9
- Cotoin
Catalog No.:BCN5545
CAS No.:479-21-0
- Indirubin
Catalog No.:BCN2385
CAS No.:479-41-4
- Canthin-6-one
Catalog No.:BCN5546
CAS No.:479-43-6
- Artemetin
Catalog No.:BCN5547
CAS No.:479-90-3
- Vitexicarpin
Catalog No.:BCN5020
CAS No.:479-91-4
- Aucubin
Catalog No.:BCN5355
CAS No.:479-98-1
- [Orn8]-Urotensin II
Catalog No.:BCC5793
CAS No.:479065-85-5
- MMPIP hydrochloride
Catalog No.:BCC7528
CAS No.:479077-02-6
- TC OT 39
Catalog No.:BCC7958
CAS No.:479232-57-0
- CNQX disodium salt
Catalog No.:BCC6908
CAS No.:479347-85-8
- NBQX disodium salt
Catalog No.:BCC6907
CAS No.:479347-86-9
- AUDA
Catalog No.:BCC4023
CAS No.:479413-70-2
Antinociceptive activity of atranorin in mice orofacial nociception tests.[Pubmed:21138055]
Z Naturforsch C. 2010 Sep-Oct;65(9-10):551-61.
Physicochemical characterization and antinociceptive and anti-inflammatory activities of Atranorin (AT) extracted from Cladina kalbii Ahti in formalin- and capsaicin-induced orofacial pain and anti-inflammatory tests in rodents were studied. Physicochemical characterization showed that AT has the general formula C19H18O8. Male Swiss mice were pretreated with AT (100, 200, and 400 mg/kg, i.p.), morphine (3 mg/kg, i.p.), or vehicle (0.9% saline with two drops of 0.2% Tween 80) before formalin (20 microl, 2%) or capsaicin (20 microl, 2.5 microg) were injected into the right vibrissa. Our results showed that i.p. treatment with AT displayed marked inhibitory effects in different orofacial pain tests in mice. AT (400 mg/kg, i.p.) was effective in reducing the nociceptive face-rubbing behavioural response in both phases of the formalin test, which was also naloxone-sensitive. Additionally, AT produced a significant antinociceptive effect at all doses in the capsaicin test. Such results were unlikely to be provoked by motor abnormality, since AT-treated mice exhibited no performance alteration on the rota rod apparatus. AT exhibited significant anti-inflammatory activity in the acute model of inflammation (leukocyte migration to the peritoneal cavity), carrageenan- and arachidonic acid-induced hind paw edema in rats. Additionally, AT exhibited a dose-dependent antioxidant activity in vitro, as assessed by total radical-trapping antioxidant parameter and total antioxidant reactivity assays. All these findings suggest that AT might represent an important tool for the management of orofacial pain and/or inflammatory disorders.
Redox properties and cytoprotective actions of atranorin, a lichen secondary metabolite.[Pubmed:21111802]
Toxicol In Vitro. 2011 Mar;25(2):462-8.
Atranorin (ATR) is a lichenic secondary metabolite with potential uses in pharmacology. Antinociceptive and antiinflammatory actions have been reported, and the use of Atranorin-enriched lichen extracts in folk medicine is widespread. Nonetheless, very few data on ATR biological actions are available. Here, we evaluated free radical scavenging activities and antioxidant potential of ATR using various in vitro assays for scavenging activity against hydroxyl radicals, hydrogen peroxide, superoxide radicals, and nitric oxide. The total reactive antioxidant potential (TRAP) and total antioxidant reactivity (TAR) indexes and in vitro lipoperoxidation were also evaluated. Besides, we determined the cytoprotective effect of ATR on H(2)O(2)-challenged SH-SY5Y cells by the MTT assay. ATR exerts differential effects towards reactive species production, enhancing hydrogen peroxide and nitric oxide production and acting as a superoxide scavenger; no activity toward hydroxyl radical production/scavenging was observed. Besides, TRAP/TAR analysis indicated that Atranorin acts as a general antioxidant, although it demonstrated to enhance peroxyl radical-induced lipoperoxidation in vitro. ATR was not cytotoxic, and also protected SH-SY5Y cells against H(2)O(2)-induced cell viability impairment. Our results suggest that ATR has a relevant redox-active action, acting as a pro-oxidant or antioxidant agent depending on the radical. Also, it will exert cytoprotective effects on cells under oxidative stress induced by H(2)O(2).
Clastogenic effect of atranorin, evernic acid, and usnic acid on human lymphocytes.[Pubmed:24868868]
Nat Prod Commun. 2014 Apr;9(4):503-4.
Three lichen secondary metabolites Atranorin (1), evernic acid (2), and usnic acid (3), were evaluated for their in vitro clastogenic and antiproliferative effects on human lymphocytes using the cytochalasin-B blocked micronucleus (CBMN) assay at concentrations of 2 microg/mL, 4 microg/mL and 6 microg/mL of final culture solution. The frequency of micronucleus (MN) was scored in binucleated cells, and cytokinesis-block proliferation index (CBPI) was calculated. Among the tested compounds, 3 exhibited the most prominent effect decreasing the frequency of MN in the range of 42.5% - 48.9%, that is about double of the positive control amifostin WR-2721 that reduces MN frequency for 22.0%. The effect of evernic acid was approximately equal to action of amifostin (23.2% -32.9%). Atranorin at concentrations of 2 microg/mL and 4 microg/mL decreasing the frequency of MN only for 11.1% and 1.8%, while in concentration of 6 microg/mL increases the frequency of MN for 9.6 %. The comparable CBPI values of the investigated compounds and control suggested that they did not show a statistically significant inhibitory effect on lymphocyte cell proliferation at applied concentrations.
Variable responses of different human cancer cells to the lichen compounds parietin, atranorin, usnic acid and gyrophoric acid.[Pubmed:20837130]
Toxicol In Vitro. 2011 Feb;25(1):37-44.
One of the ways for searching for potentially new anti-cancer drugs is the testing of various naturally synthesized compounds. Lichens are a source of unique chemical agents of which some have already been proved to be effective against various cancer in vitro models. Our study reports on the sensitivity of up to nine human cancer cell lines (A2780, HeLa, MCF-7, SK-BR-3, HT-29, HCT-116 p53(+/+), HCT-116 p53(-/-), HL-60 and Jurkat) to the anti-proliferative/cytotoxic effects of four typical secondary metabolites of lichens (parietin, Atranorin, usnic acid and gyrophoric acid). Variations in the dynamics of tumour cell line populations were evaluated by the MTT, clonogenic and viability assays, cell proliferation and detachment, cell cycle transition and apoptotic nuclear morphology, thereby confirming their concentration- and time-dependent cytotoxicity. However, in comparison with parietin and gyrophoric acid, the suppression of viability and cell proliferation by usnic acid or Atranorin was found to be more efficient at equitoxic doses and correlated more strongly with an increased number of floating cells or a higher apoptotic index. Moreover, the analysis of cell cycle distribution also revealed an accumulation of cells in S-phase. This study has confirmed a differential sensitivity of cancer cell lines to lichen secondary metabolites.