CNQX disodium saltCAS# 479347-85-8 |
2D Structure
- PF-4708671
Catalog No.:BCC5031
CAS No.:1255517-76-0
- BIX 02565
Catalog No.:BCC4303
CAS No.:1311367-27-7
- BI-D1870
Catalog No.:BCC5030
CAS No.:501437-28-1
- FMK
Catalog No.:BCC1580
CAS No.:821794-92-7
Quality Control & MSDS
3D structure
Package In Stock
Number of papers citing our products
Cas No. | 479347-85-8 | SDF | Download SDF |
PubChem ID | 6093155 | Appearance | Powder |
Formula | C9H2N4O4Na2 | M.Wt | 276.12 |
Type of Compound | N/A | Storage | Desiccate at -20°C |
Solubility | Soluble to 20 mM in water | ||
Chemical Name | disodium;6-cyano-7-nitroquinoxaline-2,3-diolate | ||
SMILES | C1=C(C(=CC2=C1N=C(C(=N2)[O-])[O-])[N+](=O)[O-])C#N.[Na+].[Na+] | ||
Standard InChIKey | YCXDDPGRZKUGDG-UHFFFAOYSA-L | ||
Standard InChI | InChI=1S/C9H4N4O4.2Na/c10-3-4-1-5-6(2-7(4)13(16)17)12-9(15)8(14)11-5;;/h1-2H,(H,11,14)(H,12,15);;/q;2*+1/p-2 | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
Description | More water soluble disodium salt of the AMPA/kainate antagonist CNQX. Also available as part of the Kainate Receptor. |
CNQX disodium salt Dilution Calculator
CNQX disodium salt Molarity Calculator
1 mg | 5 mg | 10 mg | 20 mg | 25 mg | |
1 mM | 3.6216 mL | 18.1081 mL | 36.2161 mL | 72.4323 mL | 90.5403 mL |
5 mM | 0.7243 mL | 3.6216 mL | 7.2432 mL | 14.4865 mL | 18.1081 mL |
10 mM | 0.3622 mL | 1.8108 mL | 3.6216 mL | 7.2432 mL | 9.054 mL |
50 mM | 0.0724 mL | 0.3622 mL | 0.7243 mL | 1.4486 mL | 1.8108 mL |
100 mM | 0.0362 mL | 0.1811 mL | 0.3622 mL | 0.7243 mL | 0.9054 mL |
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations. |
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
- TC OT 39
Catalog No.:BCC7958
CAS No.:479232-57-0
- MMPIP hydrochloride
Catalog No.:BCC7528
CAS No.:479077-02-6
- [Orn8]-Urotensin II
Catalog No.:BCC5793
CAS No.:479065-85-5
- Aucubin
Catalog No.:BCN5355
CAS No.:479-98-1
- Vitexicarpin
Catalog No.:BCN5020
CAS No.:479-91-4
- Artemetin
Catalog No.:BCN5547
CAS No.:479-90-3
- Canthin-6-one
Catalog No.:BCN5546
CAS No.:479-43-6
- Indirubin
Catalog No.:BCN2385
CAS No.:479-41-4
- Cotoin
Catalog No.:BCN5545
CAS No.:479-21-0
- Atranorin
Catalog No.:BCN5544
CAS No.:479-20-9
- Dyphylline
Catalog No.:BCC2297
CAS No.:479-18-5
- Coumestrol
Catalog No.:BCN3949
CAS No.:479-13-0
- NBQX disodium salt
Catalog No.:BCC6907
CAS No.:479347-86-9
- AUDA
Catalog No.:BCC4023
CAS No.:479413-70-2
- 1-O-galloyl-2-O-cinnamoyl-beta-d-glucose
Catalog No.:BCC3967
CAS No.:
- CP-809101
Catalog No.:BCC1498
CAS No.:479683-64-2
- Eleutherol
Catalog No.:BCN8480
CAS No.:480-00-2
- Astragalin
Catalog No.:BCN5549
CAS No.:480-10-4
- Oroxylin A
Catalog No.:BCN5363
CAS No.:480-11-5
- Izalpinine
Catalog No.:BCN3682
CAS No.:480-14-8
- Morin
Catalog No.:BCN1028
CAS No.:480-16-0
- Taxifolin
Catalog No.:BCN5550
CAS No.:480-18-2
- Isorhamnetin
Catalog No.:BCN5551
CAS No.:480-19-3
- Aromadendrin
Catalog No.:BCN5552
CAS No.:480-20-6
Antagonism of synaptic potentials in ventral horn neurones by 6-cyano-7-nitroquinoxaline-2,3-dione: a study in the rat spinal cord in vitro.[Pubmed:1358390]
Br J Pharmacol. 1992 Oct;107(2):375-81.
1. The rat spinal cord in vitro has been used to assess the effect of 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) on the dorsal root evoked extracellular ventral root reflex (DR-VRR) and the intracellular excitatory postsynaptic potential (e.p.s.p.) in ventral horn neurones and motoneurones. 2. CNQX (1-5 microM) produces a selective and dose-dependent reduction in the amplitude of the monosynaptic component of the DR-VRR recorded from lumbar spinal segments. 3. With low intensity dorsal root stimulation CNQX selectively attenuates the amplitude of the short latency intracellular e.p.s.p. (70% reduction, P < 0.005) and its rise-time (75%, P < 0.01) without affecting the half-time to decay. 4. When high intensity stimulation is used CNQX significantly attenuates the amplitude of the e.p.s.p. (56%, P < 0.005), rise-time (76%, P < 0.01) and abolishes the short latency spike. In addition longer latency synaptic components are attenuated and the half-time to decay significantly reduced (47%, P < 0.005). 5. The results with CNQX are compared to D-aminophosphonovalerate and discussed in relation to the recruitment of low versus high threshold afferents. The data supports an involvement of non-NMDA receptors in transmission through both mono- and polysynaptic pathways in the ventral horn.
Effect of 6-cyano-2,3-dihydroxy-7-nitro-quinoxaline (CNQX) on dorsal root-, NMDA-, kainate- and quisqualate-mediated depolarization of rat motoneurones in vitro.[Pubmed:1976402]
Br J Pharmacol. 1990 Aug;100(4):850-4.
1. Mature in vitro rat spinal cord preparations have been used to compare the depressant effects of 6-cyano-2,3-dihydroxy-7-nitroquinoxalinedione (CNQX) and kynurenate on transmission from low threshold myelinated primary afferents in dorsal roots. EC50 values +/- s.e.mean (number of preparations in parentheses) for depression of the monosynaptic ventral root reflex were respectively 1.0 +/- 0.3 microM (5) and 135 +/- 15 microM (3) for CNQX and kynurenate. Transmission through superior cervical ganglia was not significantly affected by concentrations of CNQX up to 100 microM or kynurenate up to 5 mM. 2. Immature in vitro rat spinal cord preparations were used to measure dose-ratios for antagonism of depolarizations induced by N-methyl-D-aspartate (NMDA), kainate or quisqualate by 4, 10 and 25 microM CNQX. In the presence of 0.75 mM Mg2+ pA2 values +/- s.e.mean were respectively 4.62 +/- 0.05 (16), 5.79 +/- 0.01 (4) and 5.59 +/- 0.05 (16) for each agonist. These values were not significantly altered in the absence of added Mg2+. The mean pA2 values for kainate were significantly higher than those for quisqualate (P less than 0.01). 3. Antagonism of NMDA-induced depolarizations was evident at 10 and 25 but not 4 microM CNQX. The antagonism of NMDA was reversed by D-serine (100 and 200 microM). 4. A similarity between the relative potencies of both CNQX and kynurenate for depression of synaptic transmission and antagonism of amino acid-induced depolarizations indicates that monosynaptic transmission from myelinated primary afferents to motoneurones is mediated by kainate and/or quisqualate sub-types of non-NMDA receptors.
Structure-activity relationships in the development of excitatory amino acid receptor agonists and competitive antagonists.[Pubmed:2155495]
Trends Pharmacol Sci. 1990 Jan;11(1):25-33.
Development of new selective ligands for excitatory amino acid receptors has been fundamental in supporting this rapidly developing field. Some of the most important ligands have come from the laboratories of Jeff Watkins, Povl Krogsgaard-Larsen and Tage Honore, who collaborate in this double-length review to describe the chemical features and SARs of agonists and antagonists, particularly those features associated with subtype selectivity.
Quinoxalinediones: potent competitive non-NMDA glutamate receptor antagonists.[Pubmed:2899909]
Science. 1988 Aug 5;241(4866):701-3.
The N-methyl-D-aspartate (NMDA)-subtype of glutamate receptors has been well described as a result of the early appearance of NMDA antagonists, but no potent antagonist for the "non-NMDA" glutamate receptors has been available. Quinoxalinediones have now been found to be potent and competitive antagonists at non-NMDA glutamate receptors. These compounds will be useful in the determination of the structure-activity relations of quisqualate and kainate receptors and the role of such receptors in synaptic transmission in the mammalian brain.