Home >> Research Area >>Membrane Transporter/Ion Channel>>GlyT1>> Bitopertin (R enantiomer)

Bitopertin (R enantiomer)

Glycine reuptake inhibitor CAS# 845614-12-2

Bitopertin (R enantiomer)

Catalog No. BCC1420----Order now to get a substantial discount!

Product Name & Size Price Stock
Bitopertin (R enantiomer): 5mg $322 In Stock
Bitopertin (R enantiomer): 10mg Please Inquire In Stock
Bitopertin (R enantiomer): 20mg Please Inquire Please Inquire
Bitopertin (R enantiomer): 50mg Please Inquire Please Inquire
Bitopertin (R enantiomer): 100mg Please Inquire Please Inquire
Bitopertin (R enantiomer): 200mg Please Inquire Please Inquire
Bitopertin (R enantiomer): 500mg Please Inquire Please Inquire
Bitopertin (R enantiomer): 1000mg Please Inquire Please Inquire
Related Products
  • Bitopertin

    Catalog No.:BCC1419
    CAS No.:845614-11-1

Quality Control of Bitopertin (R enantiomer)

Number of papers citing our products

Chemical structure

Bitopertin (R enantiomer)

3D structure

Chemical Properties of Bitopertin (R enantiomer)

Cas No. 845614-12-2 SDF Download SDF
PubChem ID 46837366 Appearance Powder
Formula C21H20F7N3O4S M.Wt 543.46
Type of Compound N/A Storage Desiccate at -20°C
Synonyms RG1678 (R enantiomer); RO4917838 (R enantiomer)
Solubility Soluble in Chloroform,Dichloromethane,Ethyl Acetate,DMSO,Acetone,etc.
Chemical Name [4-[3-fluoro-5-(trifluoromethyl)pyridin-2-yl]piperazin-1-yl]-[5-methylsulfonyl-2-[(2R)-1,1,1-trifluoropropan-2-yl]oxyphenyl]methanone
SMILES CC(C(F)(F)F)OC1=C(C=C(C=C1)S(=O)(=O)C)C(=O)N2CCN(CC2)C3=C(C=C(C=N3)C(F)(F)F)F
Standard InChIKey YUUGYIUSCYNSQR-GFCCVEGCSA-N
Standard InChI InChI=1S/C21H20F7N3O4S/c1-12(20(23,24)25)35-17-4-3-14(36(2,33)34)10-15(17)19(32)31-7-5-30(6-8-31)18-16(22)9-13(11-29-18)21(26,27)28/h3-4,9-12H,5-8H2,1-2H3/t12-/m1/s1
General tips For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months.
We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months.
Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it.
About Packaging 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial.
2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial.
3. Try to avoid loss or contamination during the experiment.
Shipping Condition Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request.

Biological Activity of Bitopertin (R enantiomer)

DescriptionBitopertin is a potent, noncompetitive glycine reuptake inhibitor, inhibits glycine uptake at human GlyT1 with a concentration exhibiting IC50 of 25 nM.In Vitro:Bitopertin (RG1678) competitively blocks [3H]ORG24598 binding sites at human GlyT1b in membranes from Chinese hamster ovary cells. Bitopertin potently inhibits [3H]glycine uptake in cells stably expressing hGlyT1b and mGlyT1b, with IC50 values of 25±2 nM and 22±5 nM, respectively (n=6). Conversely, Bitopertin has no effect on hGlyT2-mediated glycine uptake up to 30 μM concentration. Bitopertin has high affinity for the recombinant hGlyT1b transporter. Under equilibrium conditions (1 h at room temperature), Bitopertin displaces [3H]ORG24598 binding with a Ki of 8.1 nM. In hippocampal CA1 pyramidal cells, Bitopertin enhances NMDA-dependent long-term potentiation at 100 nM but not at 300 nM[1]. Additional profiling revealed that Bitopertin (RG1678) has an excellent selectivity profile against the GlyT2 isoform (IC50>30 μM) and toward a panel of 86 targets including transmembrane and soluble receptors, enzymes, ion channels, and monoamine transporters (<41% inhibition at 10 μM is measured for all targets)[2].In Vivo:Bitopertin (RG1678) dose-dependently increases cerebrospinal fluid and striatal levels of glycine measured bymicrodialysis in rats. Additionally Bitopertin attenuates hyperlocomotion induced by the psychostimulant D-amphetamine or the NMDA receptor glycine site antagonist L-687,414 in mice. Bitopertin also prevents the hyper-response to D-amphetamine challenge in rats treated chronically with phencyclidine, an NMDA receptor open-channel blocker. Administration of vehicle has no effect on extracellular levels of striatal glycine, which remained constant throughout the experiment. In contrast, p.o. administration of Bitopertin (1-30 mg/kg) produced a dose-dependent increase in extracellular glycine levels. Bitopertin 30 mg/kg produces glycine levels 2.5 times higher than pretreatment levels. A similar dose-dependent increase in glycine concentration is observed in the CSF of rats treated p.o. with Bitopertin (1-10 mg/kg) compared with vehicle-treated animals, 3 h after drug administration. Interestingly, the level of CSF glycine increase 3 h after Bitopertin dosing is very similar to the increase in the microdialysis experiment at the same time point[1]. In vivo pharmacokinetic studies in rat and monkey reveals that Bitopertin (RG1678) has, in both species, a low plasma clearance, an intermediate volume of distribution, a good oral bioavailability (78% for rat, 56% for monkey), and a favorable terminal half-life (5.8 h for rat, 6.4 h for monkey). The plasma protein binding is high in the two preclinical species (97%) and in human (98%). The CNS penetration of Bitopertin in rat (brain/plasma=0.7) is better than that in mouse (brain/plasma=0.5)[2].

References:
[1]. Alberati D, et al. Glycine reuptake inhibitor RG1678: A pharmacologic characterization of an investigational agent for the treatment of schizophrenia. Neuropharmacology. 2012 Feb;62(2):1152-61. [2]. Pinard E, et al. Selective GlyT1 Inhibitors: Discovery of [4-(3-Fluoro-5-trifluoromethylpyridin-2-yl)piperazin-1-yl][5-methanesulfonyl-2-((S)-2,2,2-trifluoro-1-methylethoxy)phenyl]methanone (RG1678), a Promising Novel Medicine To Treat Schizophrenia. J Me [3]. Alberati, Daniela; Moreau, Jean-Luc; Lengyel, Judith et al. Glycine reuptake inhibitor RG1678: A pharmacologic characterization of an investigational agent for the treatment of schizophrenia. Neuropharmacology (2012), 62(2), 1152-1161. [4]. Hofmann C, Banken L, Hahn M et al. Evaluation of the Effects of Bitopertin (RG1678) on Cardiac Repolarization: A Thorough Corrected QT Study in Healthy Male Volunteers. Clin Ther. 2012 Oct;34(10):2061-71. [5]. Martin-Facklam M, Pizzagalli F, Zhou Y et al. Glycine Transporter Type 1 Occupancy by Bitopertin: a Positron Emission Tomography Study in Healthy Volunteers. Neuropsychopharmacology. 2012 Nov 7. doi: 10.1038/npp.2012.212. [Epub ahead of print]

Protocol

Kinase Assay [1]
Association and dissociation kinetic analysis of [3H]ORG24598 to hGlyT1 and ratforebrain membranes is performed. [3H]ORG24598 binding experiments are performed using membranes from CHO cells expressing hGlyT1b and also in membranes from mouse, rat, monkey, and dogforebrains. Saturation isotherms are determined by adding [3H]ORG24598 to rat, mouse, monkey, and dog forebrain membranes (40 μg/well) and cell membranes (10 μg/well) in a total volume of 500 μL for 3 h at room temperature. Saturation binding experiments are analyzed by an Excel-based curve-fitting program using the Michaelis-Menten equation derived from the equation of a bimolecular reaction and the law of mass action:B=(Bmax*[F])/(Kd+[F]), where B is the amount of ligand bound at equilibrium, Bmax the maximum number of binding sites, [F] the concentration of free ligand, and Kd the ligand dissociation constant. For inhibition experiments, membranes are incubated with 3 nM [3H]ORG24598 and 10 concentrations of Bitopertin for 1 h at room temperature. Schild analysis is performed in the presence of increasing concentrations of [3H]ORG24598 (1-300 nM). IC50 values are derived as described above. Ki values are calculated according to the following equation: Ki=IC50/(1+[L]/Kd)[1].

Animal Administration [1]
Mice[1] Male NMRI mice (20-30 g) are treated with Bitopertin (0.3, 3, 1, and 10 mg/kg p.o.) or vehicle (p.o.). After 1 min, L-687,414 (50 mg/kg s.c.) or vehicle is given. After 15 min of habituation in the activity chambers, horizontal activity is recorded for 60 min. The time course of Bitopertin effects on L-678,414-induced hyperactivity is also examined; locomotor activity is assessed 2.5, 4.5, and 24 h after administration of Bitopertin (L-678,414 is always given 15 min before the activity procedure). In addition, the effect of subchronic Bitopertin is investigated. Mice receive vehicle or Bitopertin (1 mg/kg p.o.) for 4 consecutive days and L-678,414-induced hyperactivity is evaluated on day 5. Rats[1] Wistar rats receive a 14-day treatment of PCP HC1 (5 mg/kg) or vehicle (NaCl 0.9%, 5 mL/kg i.p.). 24 h following the last injection, rats (6-18 per group) are allowed to individually habituate to the test boxes for 30 min. Rats then received Bitopertin (1, 3, 10 mg/kg p.o.) or vehicle (Polysorbate 80, HEC, Methyl- + Propylparaben pH 6.0; 5 mL/kg p.o.), followed after 1 h by 1 mg/kg D-amphetamine or vehicle i.p. Horizontal activity is recorded directly after the administration of Bitopertin until 120 min after dosing with amphetamine. Data are analyzed by ANOVA supplemented by Fischer's least significant difference post hoc test.

References:
[1]. Alberati D, et al. Glycine reuptake inhibitor RG1678: A pharmacologic characterization of an investigational agent for the treatment of schizophrenia. Neuropharmacology. 2012 Feb;62(2):1152-61. [2]. Pinard E, et al. Selective GlyT1 Inhibitors: Discovery of [4-(3-Fluoro-5-trifluoromethylpyridin-2-yl)piperazin-1-yl][5-methanesulfonyl-2-((S)-2,2,2-trifluoro-1-methylethoxy)phenyl]methanone (RG1678), a Promising Novel Medicine To Treat Schizophrenia. J Me [3]. Alberati, Daniela; Moreau, Jean-Luc; Lengyel, Judith et al. Glycine reuptake inhibitor RG1678: A pharmacologic characterization of an investigational agent for the treatment of schizophrenia. Neuropharmacology (2012), 62(2), 1152-1161. [4]. Hofmann C, Banken L, Hahn M et al. Evaluation of the Effects of Bitopertin (RG1678) on Cardiac Repolarization: A Thorough Corrected QT Study in Healthy Male Volunteers. Clin Ther. 2012 Oct;34(10):2061-71. [5]. Martin-Facklam M, Pizzagalli F, Zhou Y et al. Glycine Transporter Type 1 Occupancy by Bitopertin: a Positron Emission Tomography Study in Healthy Volunteers. Neuropsychopharmacology. 2012 Nov 7. doi: 10.1038/npp.2012.212. [Epub ahead of print]

Bitopertin (R enantiomer) Dilution Calculator

Concentration (start)
x
Volume (start)
=
Concentration (final)
x
Volume (final)
 
 
 
C1
V1
C2
V2

calculate

Bitopertin (R enantiomer) Molarity Calculator

Mass
=
Concentration
x
Volume
x
MW*
 
 
 
g/mol

calculate

Preparing Stock Solutions of Bitopertin (R enantiomer)

1 mg 5 mg 10 mg 20 mg 25 mg
1 mM 1.8401 mL 9.2003 mL 18.4006 mL 36.8012 mL 46.0015 mL
5 mM 0.368 mL 1.8401 mL 3.6801 mL 7.3602 mL 9.2003 mL
10 mM 0.184 mL 0.92 mL 1.8401 mL 3.6801 mL 4.6002 mL
50 mM 0.0368 mL 0.184 mL 0.368 mL 0.736 mL 0.92 mL
100 mM 0.0184 mL 0.092 mL 0.184 mL 0.368 mL 0.46 mL
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations.

Organizitions Citing Our Products recently

 
 
 

Calcutta University

University of Minnesota

University of Maryland School of Medicine

University of Illinois at Chicago

The Ohio State University

University of Zurich

Harvard University

Colorado State University

Auburn University

Yale University

Worcester Polytechnic Institute

Washington State University

Stanford University

University of Leipzig

Universidade da Beira Interior

The Institute of Cancer Research

Heidelberg University

University of Amsterdam

University of Auckland
TsingHua University
TsingHua University
The University of Michigan
The University of Michigan
Miami University
Miami University
DRURY University
DRURY University
Jilin University
Jilin University
Fudan University
Fudan University
Wuhan University
Wuhan University
Sun Yat-sen University
Sun Yat-sen University
Universite de Paris
Universite de Paris
Deemed University
Deemed University
Auckland University
Auckland University
The University of Tokyo
The University of Tokyo
Korea University
Korea University

Background on Bitopertin (R enantiomer)

R enantiomer of RG1678. RG1678 (Bitopertin) is a potent and noncompetitive glycine reuptake inhibitor (GlyT1). Recent Phase II data shows that RG1678 is effective in reducing the negative symptoms when given in combination with second generation antipsychotics. RG1678 is currently in Phase III trials for the treatment of the negative symptoms of schizophrenia.

Featured Products
New Products
 

Description

Bitopertin R enantiomer (RG1678 R enantiomer; RO4917838 R enantiomer) is the R-enantiomer of Bitopertin. Bitopertin is a potent, noncompetitive glycine reuptake inhibitor, inhibits glycine uptake at human GlyT1 with a concentration exhibiting IC50 of 25 nM.

Keywords:

Bitopertin (R enantiomer),845614-12-2,RG1678 (R enantiomer); RO4917838 (R enantiomer),Natural Products,GlyT1, buy Bitopertin (R enantiomer) , Bitopertin (R enantiomer) supplier , purchase Bitopertin (R enantiomer) , Bitopertin (R enantiomer) cost , Bitopertin (R enantiomer) manufacturer , order Bitopertin (R enantiomer) , high purity Bitopertin (R enantiomer)

Online Inquiry for:

      Fill out the information below

      • Size:Qty: - +

      * Required Fields

                                      Result: