Chikusetsusaponin IVaCAS# 51415-02-2 |
Quality Control & MSDS
Number of papers citing our products
Chemical structure
3D structure
Cas No. | 51415-02-2 | SDF | Download SDF |
PubChem ID | 3080813 | Appearance | White-off-white powder |
Formula | C42H66O14 | M.Wt | 795.0 |
Type of Compound | Triterpenoids | Storage | Desiccate at -20°C |
Synonyms | Calenduloside F | ||
Solubility | DMSO : 100 mg/mL (125.79 mM; Need ultrasonic) | ||
Chemical Name | (2S,3S,4S,5R,6R)-6-[[(6aR,6bS,8aS,12aR,14bR)-4,4,6a,6b,11,11,14b-heptamethyl-8a-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxycarbonyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy]-3,4,5-trihydroxyoxane-2-carboxylic acid | ||
SMILES | CC1(CCC2(CCC3(C(=CCC4C3(CCC5C4(CCC(C5(C)C)OC6C(C(C(C(O6)C(=O)O)O)O)O)C)C)C2C1)C)C(=O)OC7C(C(C(C(O7)CO)O)O)O)C | ||
Standard InChIKey | YOSRLTNUOCHBEA-LSYFXOIVSA-N | ||
Standard InChI | InChI=1S/C42H66O14/c1-37(2)14-16-42(36(52)56-34-30(48)27(45)26(44)22(19-43)53-34)17-15-40(6)20(21(42)18-37)8-9-24-39(5)12-11-25(38(3,4)23(39)10-13-41(24,40)7)54-35-31(49)28(46)29(47)32(55-35)33(50)51/h8,21-32,34-35,43-49H,9-19H2,1-7H3,(H,50,51)/t21-,22-,23?,24?,25?,26-,27+,28+,29+,30-,31-,32+,34+,35-,39+,40-,41-,42+/m1/s1 | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
Description | Chikusetsusaponin IVa is a novel AMPK activator, can induce insulin secretion from βTC3 cells via GPR40 mediated calcium and PKC pathways, may be developed into a new potential for therapeutic agent used in T2DM patients.Chikusetsusaponin IVa exerts antithrombotic effects, including minor hemorrhagic events. |
Targets | AMPK | Wnt/β-catenin | CDK | PKC | GPR | GLUT | Calcium Channel |
In vitro | Chikusetsusaponin IVa methyl ester induces cell cycle arrest by the inhibition of nuclear translocation of β-catenin in HCT116 cells.[Pubmed: 25749342]Biochem Biophys Res Commun. 2015 Apr 17;459(4):591-6.We demonstrate that Chikusetsusaponin IVa methyl ester (CME), a triterpenoid saponin from the root of Achyranthes japonica, has an anticancer activity. |
In vivo | Antithrombotic effect of chikusetsusaponin IVa isolated from Ilex paraguariensis (Maté).[Pubmed: 23134458]J Med Food. 2012 Dec;15(12):1073-80.The triterpene Chikusetsusaponin IVa was isolated from the fruit of Ilex paraguariensis. |
Kinase Assay | Chikusetsu saponin IVa regulates glucose uptake and fatty acid oxidation: implications in antihyperglycemic and hypolipidemic effects.[Pubmed: 25677570]J Pharm Pharmacol. 2015 Jul;67(7):997-1007.The aim of this study is to investigate antidiabetic effects and molecular mechanisms of the chemical Chikusetsu saponin IVa (CHS) that isolated from root bark of Aralia taibaiensis, which has multiple pharmacological activity, such as relieving rheumatism, promoting blood circulation to arrest pain and antidiabetic action.
|
Animal Research | Insulinotropic effect of Chikusetsu saponin IVa in diabetic rats and pancreatic β-cells.[Pubmed: 25701750]J Ethnopharmacol. 2015 Apr 22;164:334-9.As a well-known traditional Chinese medicine the root bark of Aralia taibaiensis has traditionally been used as the medicine considered alleviating several disorders including diabetes mellitus (DM). Chikusetsusaponin IVa (CHS) has been defined as a major active ingredient of triterpenoid saponins extracted from Aralia taibaiensis. The scientific evidence of anti-diabetic effect for Chikusetsusaponin IVa remains unknown and the purpose of our study was to study its hypoglycemic and insulin secretagogue activities. |
Chikusetsusaponin IVa Dilution Calculator
Chikusetsusaponin IVa Molarity Calculator
1 mg | 5 mg | 10 mg | 20 mg | 25 mg | |
1 mM | 1.2579 mL | 6.2893 mL | 12.5786 mL | 25.1572 mL | 31.4465 mL |
5 mM | 0.2516 mL | 1.2579 mL | 2.5157 mL | 5.0314 mL | 6.2893 mL |
10 mM | 0.1258 mL | 0.6289 mL | 1.2579 mL | 2.5157 mL | 3.1447 mL |
50 mM | 0.0252 mL | 0.1258 mL | 0.2516 mL | 0.5031 mL | 0.6289 mL |
100 mM | 0.0126 mL | 0.0629 mL | 0.1258 mL | 0.2516 mL | 0.3145 mL |
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations. |
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
Chikusetsusaponin IVa a major active ingredient of triterpenoid saponins, exerts antithrombotic effects, including minor hemorrhagic events. This appears to be important for the development of new therapeutic agents. a novel AMPK activator that is capable of bypassing defective insulin signalling and could be useful for the treatment of T2DM or other metabolic disorders. IC50 Value: 199.4 ± 9.1 μM (inhibiting thrombin-induced fibrinogen clotting) Target: In vitro: Using biochemical and pharmacological methods, it proves that chikusetsusaponin IVa prolongs the recalcification time, prothrombin time, activated partial thromboplastin time, and thrombin time of normal human plasma in a dose-dependent manner; inhibits the amidolytic activity of thrombin and factor Xa upon synthetic substrates S2238 and S2222; inhibits thrombin-induced fibrinogen clotting (50% inhibition concentration, 199.4 ± 9.1 μM); inhibits thrombin- and collagen-induced platelet aggregation. Chikusetsusaponin IVa can also preferentially inhibits thrombin in a competitive manner (K(i)=219.6 μM) [1]. Chikusetsusaponin IVa suppresses the production of iNOS, COX-2, IL-1β, IL-6, and TNF-α in LPS-stimulated THP-1 cells likely by inhibiting NF-κB activation and ERK, JNK, and p38 signal pathway phosphorylation [2]. In vivo: Studies were performed on type 2 diabetic mellitus (T2DM) rats given CHS for 28 days to test the antihyperglycemic activity. Oral administration of CHS dose-dependently increased the level of serum insulin and decreased the rise in blood glucose level [3].
References:
[1]. Wang H, et al.Inhibitory effects of Chikusetsusaponin IVa on lipopolysaccharide-induced pro-inflammatory responses in THP-1 cells. Int J Immunopathol Pharmacol. 2015 Jul 8.
[2]. Cui J, et al. Insulinotropic effect of Chikusetsu saponin IVa in diabetic rats and pancreatic β-cells. J Ethnopharmacol. 2015 Apr 22;164:334-9.
[3]. Li Y, et al. Chikusetsu saponin IVa regulates glucose uptake and fatty acid oxidation: implications in antihyperglycemic and hypolipidemic effects. J Pharm Pharmacol. 2015 Jul;67(7):997-1007.
[4]. Dahmer T, et al. Antithrombotic effect of chikusetsusaponin IVa isolated from Ilex paraguariensis (Maté). J Med Food. 2012 Dec;15(12):1073-80.
- Alrestatin
Catalog No.:BCC6663
CAS No.:51411-04-2
- Canthaxanthin
Catalog No.:BCC8139
CAS No.:514-78-3
- Biperiden
Catalog No.:BCC4274
CAS No.:514-65-8
- Ferruginol
Catalog No.:BCN3155
CAS No.:514-62-5
- Euphol
Catalog No.:BCN7790
CAS No.:514-47-6
- Tirucallol
Catalog No.:BCN7787
CAS No.:514-46-5
- Parkeol
Catalog No.:BCN3728
CAS No.:514-45-4
- Periplogenin
Catalog No.:BCN2656
CAS No.:514-39-6
- Abietic acid
Catalog No.:BCN2728
CAS No.:514-10-3
- Taraxerone
Catalog No.:BCN5636
CAS No.:514-07-8
- 2-(2-Aminoethyl)-1-methylpyrrolidine
Catalog No.:BCC8477
CAS No.:51387-90-7
- Boc-Methioninol
Catalog No.:BCC2720
CAS No.:51372-93-1
- Odonicin
Catalog No.:BCN5637
CAS No.:51419-51-3
- 3-Methyladenine
Catalog No.:BCC3714
CAS No.:5142-23-4
- COG 133
Catalog No.:BCC1047
CAS No.:514200-66-9
- Cyclo(Tyr-Phe)
Catalog No.:BCN2423
CAS No.:5147-17-1
- Deoxynivalenol
Catalog No.:BCC7832
CAS No.:51481-10-8
- Cimetidine
Catalog No.:BCC4527
CAS No.:51481-61-9
- PMX 205
Catalog No.:BCC8039
CAS No.:514814-49-4
- H-Tyr(tBu)-OMe.HCl
Catalog No.:BCC2672
CAS No.:51482-39-4
- Sclareol
Catalog No.:BCN2395
CAS No.:515-03-7
- (+)-Turicine
Catalog No.:BCC8361
CAS No.:515-24-2
- Cochinchinenin A
Catalog No.:BCN3496
CAS No.:221696-69-1
- Adiantulupanone
Catalog No.:BCN7360
CAS No.:51511-05-8
Insulinotropic effect of Chikusetsu saponin IVa in diabetic rats and pancreatic beta-cells.[Pubmed:25701750]
J Ethnopharmacol. 2015 Apr 22;164:334-9.
ETHNOPHARMACOLOGICAL RELEVANCE: As a well-known traditional Chinese medicine the root bark of Aralia taibaiensis has traditionally been used as the medicine considered alleviating several disorders including diabetes mellitus (DM). Chikusetsu saponin IVa (CHS) has been defined as a major active ingredient of triterpenoid saponins extracted from Aralia taibaiensis. The scientific evidence of anti-diabetic effect for CHS remains unknown and the purpose of our study was to study its hypoglycemic and insulin secretagogue activities. MATERIALS AND METHODS: In vivo studies were performed on type 2 diabetic mellitus (T2DM) rats given CHS for 28 days to test the antihyperglycemic activity. The in vitro effects and possible mechanisms of CHS on the insulin secretion in pancreatic beta-cell line betaTC3 were determined. RESULTS: Oral administration of CHS dose-dependently increased the level of serum insulin and decreased the rise in blood glucose level in an in vivo treatment. In vitro, CHS potently stimulated the release of insulin from betaTC3 cells at both basal and stimulatory glucose concentrations, the effect which was changed by the removal of extracellular Ca(2+). Two methods showed that CHS enhanced the intracellular calcium levels in betaTC3 cells. CHS was capable of enhancing the phosphorylation of extracellular signal-regulated protein kinases C (PKC), which could be reversed by a PKC inhibitor (RO320432), and the insulin secretion induced by CHS was also inhibited by RO320432. Further study also showed that the insulinotropic effect, intracellular calcium levels and the phosphorylation of PKC were reduced by inhibiting G protein-coupled receptor 40 (GPR40) by a GPR40 inhibitor (DC126026). CONCLUSION: These observations suggest that the signaling of CHS-induced insulin secretion from betaTC3 cells via GPR40 mediated calcium and PKC pathways and thus CHS might be developed into a new potential for therapeutic agent used in T2DM patients.
Antithrombotic effect of chikusetsusaponin IVa isolated from Ilex paraguariensis (Mate).[Pubmed:23134458]
J Med Food. 2012 Dec;15(12):1073-80.
The triterpene Chikusetsusaponin IVa was isolated from the fruit of Ilex paraguariensis. Using biochemical and pharmacological methods, we demonstrated that Chikusetsusaponin IVa (1) prolongs the recalcification time, prothrombin time, activated partial thromboplastin time, and thrombin time of normal human plasma in a dose-dependent manner, (2) inhibits the amidolytic activity of thrombin and factor Xa upon synthetic substrates S2238 and S2222, (3) inhibits thrombin-induced fibrinogen clotting (50% inhibition concentration, 199.4 +/- 9.1 muM), and (4) inhibits thrombin- and collagen-induced platelet aggregation. The results also indicate that Chikusetsusaponin IVa preferentially inhibits thrombin in a competitive manner (K(i)=219.6 muM). Furthermore, when administered intravenously to rats, Chikusetsusaponin IVa inhibited thrombus formation in a stasis model of venous thrombosis, although it did not induce a significant bleeding effect. Chikusetsusaponin IVa also prolonged the ex vivo activated partial thromboplastin time. Altogether, these data suggest that Chikusetsusaponin IVa exerts antithrombotic effects, including minor hemorrhagic events. This appears to be important for the development of new therapeutic agents.
Chikusetsu saponin IVa regulates glucose uptake and fatty acid oxidation: implications in antihyperglycemic and hypolipidemic effects.[Pubmed:25677570]
J Pharm Pharmacol. 2015 Jul;67(7):997-1007.
OBJECTIVES: The aim of this study is to investigate antidiabetic effects and molecular mechanisms of the chemical Chikusetsu saponin IVa (CHS) that isolated from root bark of Aralia taibaiensis, which has multiple pharmacological activity, such as relieving rheumatism, promoting blood circulation to arrest pain and antidiabetic action. METHODS: Rats with streptozotocin/nicotinamide-induced type 2 diabetes mellitus (T2DM) and insulin-resistant myocytes were used. Adenosine monophosphate (AMP)-activated protein kinase (AMPK) and acetyl-CoA carboxylase were quantified by immunoblotting. Assays of glucose uptake, fatty acid oxidation, glucose transporter 4 (GLUT4) translocation and carnitine palmitoyl transferase-1 (CPT-1) activity were performed. KEY FINDINGS: Chronic oral administration of CHS effectively decreases blood glucose, triglyceride, free fatty acid (FFA) and low density lipoprotein-cholesterol levels in T2DM rats. In both normal and insulin-resistant C2C12 myocytes, CHS activates AMPK, and increases glucose uptake or fatty acid oxidation through enhancing membrane translocation of GLUT4 or CPT-1 activity respectively. Knockdown of AMPK significantly diminishes the effects of CHS on glucose uptake and fatty acid oxidation. CONCLUSIONS: CHS is a novel AMPK activator that is capable of bypassing defective insulin signalling and could be useful for the treatment of T2DM or other metabolic disorders.
Chikusetsusaponin IVa methyl ester induces cell cycle arrest by the inhibition of nuclear translocation of beta-catenin in HCT116 cells.[Pubmed:25749342]
Biochem Biophys Res Commun. 2015 Apr 17;459(4):591-6.
We demonstrate that Chikusetsusaponin IVa methyl ester (CME), a triterpenoid saponin from the root of Achyranthes japonica, has an anticancer activity. We investigate its molecular mechanism in depth in HCT116 cells. CME reduces the amount of beta-catenin in nucleus and inhibits the binding of beta-catenin to specific DNA sequences (TCF binding elements, TBE) in target gene promoters. Thus, CME appears to decrease the expression of cell cycle regulatory proteins such as Cyclin D1, as a representative target for beta-catenin, as well as CDK2 and CDK4. As a result of the decrease of the cell cycle regulatory proteins, CME inhibits cell proliferation by arresting the cell cycle at the G0/G1 phase. Therefore, we suggest that CME as a novel Wnt/beta-catenin inhibitor can be a putative agent for the treatment of colorectal cancers.