Ciproxifan maleateCAS# 184025-19-2 |
- CFM 1571 hydrochloride
Catalog No.:BCC5924
CAS No.:1215548-30-3
- A 350619 hydrochloride
Catalog No.:BCC5939
CAS No.:1217201-17-6
- BAY 41-2272
Catalog No.:BCC7932
CAS No.:256376-24-6
- Riociguat
Catalog No.:BCC1899
CAS No.:625115-55-1
Quality Control & MSDS
Number of papers citing our products
Chemical structure
3D structure
Cas No. | 184025-19-2 | SDF | Download SDF |
PubChem ID | 16219152 | Appearance | Powder |
Formula | C20H22N2O6 | M.Wt | 386.4 |
Type of Compound | N/A | Storage | Desiccate at -20°C |
Solubility | DMSO : ≥ 100 mg/mL (258.80 mM) *"≥" means soluble, but saturation unknown. | ||
Chemical Name | (Z)-but-2-enedioic acid;cyclopropyl-[4-[3-(1H-imidazol-5-yl)propoxy]phenyl]methanone | ||
SMILES | C1CC1C(=O)C2=CC=C(C=C2)OCCCC3=CN=CN3.C(=CC(=O)O)C(=O)O | ||
Standard InChIKey | RLQFKEYRALXXEJ-BTJKTKAUSA-N | ||
Standard InChI | InChI=1S/C16H18N2O2.C4H4O4/c19-16(12-3-4-12)13-5-7-15(8-6-13)20-9-1-2-14-10-17-11-18-14;5-3(6)1-2-4(7)8/h5-8,10-12H,1-4,9H2,(H,17,18);1-2H,(H,5,6)(H,7,8)/b;2-1- | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
Ciproxifan maleate Dilution Calculator
Ciproxifan maleate Molarity Calculator
1 mg | 5 mg | 10 mg | 20 mg | 25 mg | |
1 mM | 2.588 mL | 12.94 mL | 25.8799 mL | 51.7598 mL | 64.6998 mL |
5 mM | 0.5176 mL | 2.588 mL | 5.176 mL | 10.352 mL | 12.94 mL |
10 mM | 0.2588 mL | 1.294 mL | 2.588 mL | 5.176 mL | 6.47 mL |
50 mM | 0.0518 mL | 0.2588 mL | 0.5176 mL | 1.0352 mL | 1.294 mL |
100 mM | 0.0259 mL | 0.1294 mL | 0.2588 mL | 0.5176 mL | 0.647 mL |
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations. |
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
Ciproxifan is an extremely potent histamine H3 inverse agonist/antagonist.
- Ciproxifan
Catalog No.:BCC4539
CAS No.:184025-18-1
- Mithramycin A
Catalog No.:BCC2470
CAS No.:18378-89-7
- Cyanidin 3-sophoroside chloride
Catalog No.:BCN2611
CAS No.:18376-31-3
- Amyloid β-Protein (1-15)
Catalog No.:BCC1003
CAS No.:183745-81-5
- MRS 1220
Catalog No.:BCC6972
CAS No.:183721-15-5
- 1,2,3,4,5,6-Hexabromocyclohexane
Catalog No.:BCC2437
CAS No.:1837-91-8
- Penthiopyrad
Catalog No.:BCC8072
CAS No.:183675-82-3
- CYN 154806
Catalog No.:BCC5823
CAS No.:183658-72-2
- Cleroindicin A
Catalog No.:BCC8916
CAS No.:176598-06-4
- Apicidin
Catalog No.:BCC3599
CAS No.:183506-66-3
- CPPG
Catalog No.:BCC6872
CAS No.:183364-82-1
- Erlotinib
Catalog No.:BCC1557
CAS No.:183321-74-6
- sitaxsentan
Catalog No.:BCC1951
CAS No.:184036-34-8
- Dimeric coniferyl acetate
Catalog No.:BCN1148
CAS No.:184046-40-0
- Calystegine B4
Catalog No.:BCN1881
CAS No.:184046-85-3
- Isoleojaponin
Catalog No.:BCN7442
CAS No.:1840966-49-5
- Hautriwaic acid
Catalog No.:BCN4686
CAS No.:18411-75-1
- GB 2a
Catalog No.:BCN7425
CAS No.:18412-96-9
- SR 142948
Catalog No.:BCC7323
CAS No.:184162-64-9
- Dihydromorin
Catalog No.:BCN1149
CAS No.:18422-83-8
- Picfeltarraenin IV
Catalog No.:BCN2852
CAS No.:184288-35-5
- Vitisin B
Catalog No.:BCN6697
CAS No.:142449-90-9
- Cucurbitacin E
Catalog No.:BCN2300
CAS No.:18444-66-1
- Gefitinib
Catalog No.:BCN2173
CAS No.:184475-35-2
Histamine H3 receptor antagonists display antischizophrenic activities in rats treated with MK-801.[Pubmed:27089413]
J Basic Clin Physiol Pharmacol. 2016 Sep 1;27(5):463-71.
BACKGROUND: Animal models based on N-methyl-d-aspartate receptor blockade have been extensively used for schizophrenia. Ketamine and MK-801 produce behaviors related to schizophrenia and exacerbated symptoms in patients with schizophrenia, which led to the use of PCP (phencyclidine)- and MK-801 (dizocilpine)-treated animals as models for schizophrenia. METHODS: The study investigated the effect of subchronic dosing (once daily, 7 days) of histamine H3 receptor (H3R) antagonists, ciproxifan (CPX) (3 mg/kg, i.p.), and clobenpropit (CBP) (15 mg/kg, i.p.) on MK-801 (0.2 mg/kg, i.p.)-induced locomotor activity and also measured dopamine and histamine levels in rat's brain homogenates. The study also included clozapine (CLZ) (3.0 mg/kg, i.p.) and chlorpromazine (CPZ) (3.0 mg/kg, i.p.), the atypical and typical antipsychotic, respectively. RESULTS: Atypical and typical antipsychotic was used to serve as clinically relevant reference agents to compare the effects of the H3R antagonists. MK-801 significantly increased horizontal locomotor activity, which was reduced with CPX and CBP. MK-801-induced locomotor hyperactivity attenuated by CPX and CBP was comparable to CLZ and CPZ. MK-801 raised striatal dopamine level, which was reduced in rats pretreated with CPX and CBP. CPZ also significantly lowered striatal dopamine levels, although the decrease was less robust compared to CLZ, CPX, and CBP. MK-801 increased histamine content although to a lesser degree. Subchronic treatment with CPX and CBP exhibited further increased histamine levels in the hypothalamus compared to MK-801 treatment alone. Histamine H3 receptor agonist, R-alpha methylhistamine (10 mg/kg, i.p.), counteracted the effect of CPX and CBP. CONCLUSIONS: The present study shows the positive effects of CPX and CBP on MK-801-induced schizophrenia-like behaviors in rodents.
The H3 antagonist, ciproxifan, alleviates the memory impairment but enhances the motor effects of MK-801 (dizocilpine) in rats.[Pubmed:20621107]
Neuropharmacology. 2010 Nov;59(6):492-502.
Antagonists of H(3)-type histamine receptors exhibit cognitive-enhancing properties in various memory paradigms as well as evidence of antipsychotic activity in normal animals. The present study determined if a prototypical H(3) antagonist, ciproxifan, could reverse the behavioral effects of MK-801, a drug used in animals to mimic the hypoglutamatergic state suspected to exist in schizophrenia. Four behaviors were chosen for study, locomotor activity, ataxia, prepulse inhibition (PPI), and delayed spatial alternation, since their modification by dizocilpine (MK-801) has been well characterized. Adult male Long-Evans rats were tested after receiving a subcutaneous injection of ciproxifan or vehicle followed 20 min later by a subcutaneous injection of MK-801 or vehicle. Three doses of MK-801 (0.05, 0.1, & 0.3 mg/kg) increased locomotor activity. Each dose of ciproxifan (1.0 & 3.0 mg/kg) enhanced the effect of the moderate dose of MK-801, but suppressed the effect of the high dose. Ciproxifan (3.0 mg/kg) enhanced the effects of MK-801 (0.1 & 0.3 mg/kg) on fine movements and ataxia. Deficits in PPI were observed after treatment with MK-801 (0.05 & 0.1 mg/kg), but ciproxifan did not alter these effects. Delayed spatial alternation was significantly impaired by MK-801 (0.1 mg/kg) at a longer delay, and ciproxifan (3.0 mg/kg) alleviated this impairment. These results indicate that some H(3) antagonists can alleviate the impact of NMDA receptor hypofunction on some forms of memory, but may exacerbate its effect on other behaviors.
Antihistaminic drugs modify casein-induced inflammation in the rat.[Pubmed:20012883]
Inflamm Res. 2010 Mar;59 Suppl 2:S187-8.
INTRODUCTION: All known antihistaminics may affect several inflammatory events, including chemotaxis, the survival of eosinophils, and the release of chemokines and cytokines from different sources, thus highlighting the potential for modulating chronic inflammation and immune responses. The aim of the study was to examine the effect of H(1)-H(4) antihistaminic drugs in an acute model of casein-induced inflammation in rat. MATERIALS AND METHODS: Inflammation was induced by injection of a 12% solution of casein into the peritoneal cavity of male Wistar rats. The rats were treated intraperitoneally with pyrilamine maleate (10 mg/kg), cimetidine (25 mg/kg), thioperamide maleate (2 mg/kg) or ciproxifan hydrogen maleate (0.14 mg/kg) twice: 2 hours prior and 4 hours after casein administration. The level of histamine in blood and chemiluminescence of stimulated and unstimulated PMNs was measured. RESULTS: The level of histamine in the casein-induced inflammation group was higher than in the control group. Treatment with pyrilamine and ciproxifan additionally increased the level of blood histamine during the inflammatory response. Peripheral blood neutrophils from rats with casein-induced inflammation tended to respond less to zymosan stimulation than the neutrophils in the controls. Selective H(1) and H(3) antagonists injected into the rats with casein-induced inflammation significantly increased the response of the neutrophils to zymosan (p < 0.01). CONCLUSION: Histamine produced or released into the blood in the course of experimental inflammation exerts its effects on the PMN-s via stimulation of H(1) and H(3) receptors.
Modulation of prepulse inhibition and stereotypies in rodents: no evidence for antipsychotic-like properties of histamine H3-receptor inverse agonists.[Pubmed:20437030]
Psychopharmacology (Berl). 2010 Jul;210(4):591-604.
RATIONALE: H(3)-receptor inverse agonists raise a great interest as innovative therapeutics in several central disorders. Whereas their procognitive properties are well established, their antipsychotic-like properties are still debated. OBJECTIVES: We further explored the effect of maximal doses (3-10 mg/kg) of ciproxifan, BF2.649, and ABT-239, three selective H(3)-receptor inverse agonists, on deficits of prepulse inhibition (PPI) induced by apomorphine, MK-801, and phencyclidine (PCP). Their effect was also investigated on stereotypies induced by apomorphine and methamphetamine. RESULTS: Ciproxifan, BF2.649, and ABT-239 did not reverse the PPI impairment produced by apomorphine (0.5 mg/kg, subcutaneous) in rats. Ciproxifan and BF2.649 did not reverse the impairment induced in mice by MK-801 (0.3 mg/kg). Ciproxifan and BF2.649 also failed to reverse the disruption induced in mice by PCP (5-10 mg/kg). Low to moderate doses of haloperidol (0.1-0.4 mg/kg, intraperitoneal), alone or co-administered with BF2.649, did not reverse MK-801-induced PPI disruption. A high dose (1 mg/kg) of haloperidol partially reversed the MK-801-induced deficit and BF2.649 tended to increase this effect, although nonsignificantly. Whereas stereotypies induced in mice by apomorphine and methamphetamine were totally suppressed by haloperidol, the decrease induced by ciproxifan was partial against apomorphine and very low, if any, against methamphetamine. CONCLUSIONS: Their total absence of effect in several validated animal models of the disease does not support antipsychotic properties of H(3)-receptor inverse agonists. However, their positive effects previously reported in behavioral tasks addressing learning, attention, and memory maintain the interest of H(3)-receptor inverse agonists for the treatment of cognitive symptoms of schizophrenia as adjunctive medications.
Reversal of oxidative stress by histamine H(3) receptor-ligands in experimental models of schizophrenia.[Pubmed:22331799]
Arzneimittelforschung. 2012 May;62(5):222-9.
Schizophrenia (SCZ) is a debilitating disorder afflicting around 1% of the world population. Recent literature reveals oxidative injuries contribute enormously to the pathophysiology of SCZ alongside other psychopathological disturbances. Histamine H3R-antagonists have shown dual mechanism of action in experimental models of SCZ. Firstly it prevents oxidative stress and secondly alleviates schizophrenic symptoms, particularly the negative symptoms and cognitive deficits. In the present study, histamine H3R-antagonists used were ciproxifan (3.0 mg/kg, ip) and clobenpropit (15 mg/kg, ip) markedly controlled the elevated levels of various oxidative stress markers, for example, thiobarbituric acid reactive substance (TBARS), glutathione (GSH), superoxide dismutase, catalase, etc., as a result of augmented oxidative stress in the experimental models of SCZ such as amphetamine (0.5 mg/kg, sc) and dizocilpine (MK-801) (0.2 mg/kg, ip) induced locomotor hyperactivity, apomorphine (1.5 mg/kg, sc) induced climbing behavior and haloperidol (2.0 mg/kg, po) induced catalepsy. The results of the present study revealed that H3R-antagonists possess antioxidant activity and could serve with dual mechanism by supplementing antioxidant needs of SCZ and at the same time controlling symptoms of SCZ.