GR 231118Potent NPY Y1 antagonist/NPY Y4 agonist. Binds to NPFF receptors CAS# 158859-98-4 |
- GPR120 modulator 1
Catalog No.:BCC1599
CAS No.:1050506-75-6
Quality Control & MSDS
Number of papers citing our products
Chemical structure
3D structure
Cas No. | 158859-98-4 | SDF | Download SDF |
PubChem ID | 24868178 | Appearance | Powder |
Formula | C110H170N34O24 | M.Wt | 2352.77 |
Type of Compound | N/A | Storage | Desiccate at -20°C |
Synonyms | 1229U91, GW 1229 | ||
Solubility | Soluble in Chloroform,Dichloromethane,Ethyl Acetate,DMSO,Acetone,etc. | ||
Sequence | IEPXYRLRY IEPXYRLRY* (Modifications: X = Dpr, Amide Bridge = 2 - 4*, 4 - 2*, Tyr-9 = C-terminal amide) | ||
SMILES | CCC(C)C(C(=O)NC1CCC(=O)NCC(NC(=O)C2CCCN2C(=O)C(CCC(=O)NCC(NC(=O)C3CCCN3C1=O)C(=O)NC(CC4=CC=C(C=C4)O)C(=O)NC(CCCNC(=N)N)C(=O)NC(CC(C)C)C(=O)NC(CCCNC(=N)N)C(=O)NC(CC5=CC=C(C=C5)O)C(=O)N)NC(=O)C(C(C)CC)N)C(=O)NC(CC6=CC=C(C=C6)O)C(=O)NC(CCCNC(=N)N)C(=O)NC(CC(C)C)C(=O)NC(CCCNC(=N)N)C(=O)NC(CC7=CC=C(C=C7)O)C(=O)N)N | ||
Standard InChIKey | RJRBRCCJETZJLT-GSICZYLSSA-N | ||
Standard InChI | InChI=1S/C110H170N34O24/c1-9-59(7)87(111)103(165)133-73-39-41-85(149)127-55-81(99(161)139-79(53-63-27-35-67(147)36-28-63)97(159)131-71(19-13-45-125-109(119)120)93(155)137-77(49-57(3)4)95(157)129-69(17-11-43-123-107(115)116)91(153)135-75(89(113)151)51-61-23-31-65(145)32-24-61)142-102(164)84-22-16-48-144(84)106(168)74(134-104(166)88(112)60(8)10-2)40-42-86(150)128-56-82(141-101(163)83-21-15-47-143(83)105(73)167)100(162)140-80(54-64-29-37-68(148)38-30-64)98(160)132-72(20-14-46-126-110(121)122)94(156)138-78(50-58(5)6)96(158)130-70(18-12-44-124-108(117)118)92(154)136-76(90(114)152)52-62-25-33-66(146)34-26-62/h23-38,57-60,69-84,87-88,145-148H,9-22,39-56,111-112H2,1-8H3,(H2,113,151)(H2,114,152)(H,127,149)(H,128,150)(H,129,157)(H,130,158)(H,131,159)(H,132,160)(H,133,165)(H,134,166)(H,135,153)(H,136,154)(H,137,155)(H,138,156)(H,139,161)(H,140,162)(H,141,163)(H,142,164)(H4,115,116,123)(H4,117,118,124)(H4,119,120,125)(H4,121,122,126)/t59-,60-,69-,70-,71-,72-,73-,74-,75-,76-,77-,78-,79-,80-,81?,82?,83-,84-,87-,88-/m0/s1 | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
Description | Potent neuropeptide Y (NPY) Y1 receptor antagonist (pA2 = 10 and 10.5 at rY1 and hY1, receptors respectively). Also a potent and selective NPY Y4 receptor agonist (pEC50 values are 6.0, 8.6 and 6.1 for rY2, hY4 and rY5 receptors respectively). Suppresses food intake in rats in vivo. Also has affinity for neuropeptide FF (NPFF) receptors in vitro (Ki = 43-73 nM). |
GR 231118 Dilution Calculator
GR 231118 Molarity Calculator
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
- BET-BAY 002
Catalog No.:BCC5510
CAS No.:1588521-78-1
- ent-17-Hydroxykaura-9(11),15-dien-19-oic acid
Catalog No.:BCN6788
CAS No.:1588516-88-4
- 3Alaph-Tigloyloxypterokaurene L3
Catalog No.:BCN6787
CAS No.:1588516-87-3
- Boc-ß-HoAla-OH
Catalog No.:BCC3224
CAS No.:158851-30-0
- 3-O-(2'E ,4'Z-decadienoyl)-20-O-acetylingenol
Catalog No.:BCN1550
CAS No.:158850-76-1
- GR 159897
Catalog No.:BCC7001
CAS No.:158848-32-9
- Escin IIB
Catalog No.:BCN8127
CAS No.:158800-83-0
- Salvianolic acid F
Catalog No.:BCN2924
CAS No.:158732-59-3
- Aescin IIA
Catalog No.:BCN6551
CAS No.:158732-55-9
- 2-Naphthyl N-benzoylphenylalaninate
Catalog No.:BCC8583
CAS No.:15873-25-3
- Dihydrexidine hydrochloride
Catalog No.:BCC5681
CAS No.:158704-02-0
- Rimonabant hydrochloride
Catalog No.:BCC1898
CAS No.:158681-13-1
- APC 366
Catalog No.:BCC7392
CAS No.:158921-85-8
- Boc-D-Tryptophanol
Catalog No.:BCC2698
CAS No.:158932-00-4
- Secoisolarisiresinol Diglucoside
Catalog No.:BCC9140
CAS No.:158932-33-3
- Wedelobatin A
Catalog No.:BCN6731
CAS No.:1589488-34-5
- Wedelobatin B
Catalog No.:BCN6730
CAS No.:1589488-35-6
- 6-Benzyloxyindole
Catalog No.:BCC8769
CAS No.:15903-94-3
- F1839-I
Catalog No.:BCN6450
CAS No.:159096-49-8
- 3F8
Catalog No.:BCC6112
CAS No.:159109-11-2
- CARIPORIDE
Catalog No.:BCC6432
CAS No.:159138-80-4
- L-755,507
Catalog No.:BCC7282
CAS No.:159182-43-1
- MM 77 dihydrochloride
Catalog No.:BCC6854
CAS No.:159187-70-9
- L-NIO dihydrochloride
Catalog No.:BCC6689
CAS No.:159190-44-0
Synthesis of new C-25 and C-26 steroidal acids as potential ligands of the nuclear receptors DAF-12, LXR and GR.[Pubmed:28300583]
Steroids. 2017 May;121:40-46.
A new methodology to obtain C-25 and C-26 steroidal acids starting from pregnenolone is described. Construction of the side chain was achieved by applying the Mukaiyama aldol reaction with a non-hydrolytic work-up to isolate the trapped silyl enol ether with higher yields. Using this methodology we synthesized three new steroidal acids as potential ligands of DAF-12, Liver X and Glucocorticoid nuclear receptors and studied their activity in reporter gene assays. Our results show that replacement of the 21-CH3 by a 20-keto group in the side chains of the cholestane scaffold of DAF-12 or Liver X receptors ligands causes the loss of the activity.
Recruitment of bone marrow CD11b(+)Gr-1(+) cells by polymeric nanoparticles for antigen cross-presentation.[Pubmed:28317931]
Sci Rep. 2017 Mar 20;7:44691.
The objective of this study was to investigate the function of poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) on the activation of antigen-specific CD8(+) T cell responses via the CD11b(+)Gr(-)1(+) myeloid subpopulations in murine bone marrow (BM). PLGA NPs containing ovalbumin (OVA) were fabricated by the double-emulsion method. The CD11b(+)Gr-1(low)Ly-6C(high) and CD11b(+)Gr-1(high)Ly-6C(low) subsets from mice bone marrow were sorted and treated with the PLGA/OVA NPs, followed by co-culture with the carboxyfluorescein succinimidyl ester (CFSE)-labelled OT-I CD8(+) cells. Co-culture of OT-I CD8(+) T cells with PLGA/OVA NPs-primed CD11b(+)Gr-1(+) subsets upregulated the expression of IL-2, TNF-alpha, INF-gamma, granzyme B, and perforin, resulting in proliferation of CD8(+) T cells and differentiation into effector cytotoxic T lymphocytes (CTLs). In vivo proliferation of CFSE-labelled OT-I CD8(+) cells in response to OVA was also obtained in the animals immunized with PLGA/OVA NPs. The results presented in this study demonstrate the ability of polymeric NPs to recruit two CD11b(+)Gr(-)1(+) myeloid subsets for effective presentation of exogenous antigen to OT-I CD8(+) T cells in the context of major histocompatibility complex (MHC) class I, leading to an induction of antigen-specific cell proliferation and differentiation into effector cells.
Muscle-specific downregulation of GR levels inhibits adipogenesis in porcine intramuscular adipocyte tissue.[Pubmed:28360421]
Sci Rep. 2017 Mar 30;7(1):510.
Intramuscular adipose is conducive to good pork quality, whereas subcutaneous adipose is considered as waste in pig production. So uncovering the regulation differences between these two adiposes is helpful to tissue-specific control of fat deposition. In this study, we found the sensitivity to glucocorticoids (GCs) was lower in intramuscular adipocytes (IMA) compared with subcutaneous adipocytes (SA). Comparison of glucocorticoid receptor (GR) revealed that IMA had lower GR level which contributed to its reduced GCs sensitivity. Higher methylation levels of GR promotor 1-C and 1-H were detected in IMA compared with SA. GR expression decrease was also found in adipocytes when treated with muscle conditioned medium (MCM) in vitro, which resulted in significant inhibition of adipocytes proliferation and differentiation. Since abundant myostatin (MSTN) was detected in MCM by ELISA assay, we further investigated the effect of this myokine on adipocytes. MSTN treatment suppressed adipocytes GR expression, cell proliferation and differentiation, which mimicked the effects of MCM. The methylation levels of GR promotor 1-C and 1-H were also elevated after MSTN treatment. Our study reveals the role of GR in muscle fiber inhibition on intramuscular adipocytes, and identifies myostatin as a muscle-derived modulator for adipose GR level.
Agonist and antagonist activities on human NPFF(2) receptors of the NPY ligands GR231118 and BIBP3226.[Pubmed:11325787]
Br J Pharmacol. 2001 May;133(1):1-4.
Neuropeptide FF (NPFF) is a part of a neurotransmitter system acting as a modulator of endogenous opioid functions. At this time, no non-peptide or peptide NPFF-antagonists have been discovered. Here, we demonstrate that Neuropeptide Y (NPY) ligands, in fact possess significant ability to interact with the human NPFF(2) receptors. NPY Y(1) antagonist BIBP3226 and mixed Y(1) antagonist/Y(4) agonist GR231118 are able to displace with low affinity, 50 -- 100 nM, the specific binding on NPFF receptors expressed in CHO cells as well as in rat dorsal spinal cord, an affinity however superior to those determined against Y(2), Y(4) or Y(5) receptors. Furthermore, BIBP3226 which is unable to inhibit the forskolin-stimulated cyclic AMP production mediated by NPFF(2) receptors, antagonizes the effect of NPFF, revealing the first antagonist of NPFF receptors. These properties of NPY ligands on Neuropeptide FF receptors must be considered when evaluating pharmacological activities of these drugs.
A potent neuropeptide Y antagonist, 1229U91, suppressed spontaneous food intake in Zucker fatty rats.[Pubmed:9612420]
Am J Physiol. 1998 May;274(5):R1500-4.
Neuropeptide Y (NPY) is one of the most potent orexigenic substances known. 1229U91 was found to be a potent and selective NPY antagonist. To elucidate a physiological role of NPY in hyperphagia in obese animals, we studied the effect of 1229U91 on spontaneous food intake in obese and lean Zucker rats. The food intake of Zucker rats was suppressed by intracerebroventricular administration of 1229U91 more potently in obese than in lean animals without abnormal behavior (31.7 and 67.3% inhibition at doses of 10 and 30 micrograms, respectively, in Zucker fatty rats and 22.2% inhibition at 30 micrograms in lean rats). This compound markedly suppressed NPY-induced food intake at 30 micrograms but did not affect galanin-induced food intake, suggesting that the feeding suppression seen in Zucker fatty and lean rats is pharmacologically and behaviorally specific. These results suggest that NPY is involved in feeding behavior in Zucker fatty rats and that NPY contributes to feeding to a greater degree in Zucker fatty than in lean rats. The hyperphagia in Zucker fatty rats may be due to the abnormal overactivation of the NPYergic system.
GR231118 (1229U91) and other analogues of the C-terminus of neuropeptide Y are potent neuropeptide Y Y1 receptor antagonists and neuropeptide Y Y4 receptor agonists.[Pubmed:9669502]
Eur J Pharmacol. 1998 May 15;349(1):97-105.
GR231118, BW1911U90, Bis(31/31')[[Cys31, Trp32, Nva34] neuropeptide Y(31-36)] (T-190) and [Trp-Arg-Nva-Arg-Tyr]2-NH2 (T-241) are peptide analogs of the C-terminus of neuropeptide Y that have recently been shown to be antagonists of the neuropeptide Y Y1 receptor. In this study, the activity of these peptides at each of the cloned neuropeptide Y receptor subtypes is determined in radioligand binding assays and in functional assays (inhibition of forskolin-stimulated cAMP formation). GR231118 is a potent antagonist at the human and rat neuropeptide Y Y1 receptors (pA2 = 10.5 and 10.0, respectively; pKi = 10.2 and 10.4, respectively), a potent agonist at the human neuropeptide Y Y4 receptor (pEC50 = 8.6; pKi = 9.6) and a weak agonist at the human and rat neuropeptide Y Y2 and Y5 receptors. GR231118 also has high affinity for the mouse neuropeptide Y Y6 receptor (pKi = 8.8). Therefore, GR231118 is a relatively selective neuropeptide Y Y1 receptor antagonist, but has appreciable activity at the neuropeptide Y Y4 and Y6 receptors as well. BW1911U90, T-190 and T-241 are moderately potent neuropeptide Y Y1 receptor antagonists (pA2 = 7.1, 5.8 and 6.5, respectively; pKi = 8.3, 6.5 and 6.8, respectively) and neuropeptide Y Y4 receptor agonists (pEC50 = 6.8, 6.3 and 6.6, respectively; pKi; 8.3, 7.7 and 8.3, respectively). These data suggest that the C-terminus of neuropeptide Y and related peptides is sufficient for activation of the neuropeptide Y Y4 receptor, but is not sufficient for activation of the neuropeptide Y Y1 receptor. Because BW1911U90, T-190 and T-241 are significantly less potent at the cloned human neuropeptide Y Y1 receptor than at the neuropeptide Y receptor in human erythroleukemia cells, these cells may express a novel neuropeptide Y receptor with high affinity for these peptides.