Ginsenoside Ra2CAS# 83459-42-1 |
Quality Control & MSDS
Number of papers citing our products
Chemical structure
3D structure
Cas No. | 83459-42-1 | SDF | Download SDF |
PubChem ID | 100941543 | Appearance | Powder |
Formula | C58H98O26 | M.Wt | 1211.39 |
Type of Compound | Triterpenoids | Storage | Desiccate at -20°C |
Solubility | Soluble in Chloroform,Dichloromethane,Ethyl Acetate,DMSO,Acetone,etc. | ||
Chemical Name | (2S,3R,4S,5S,6R)-2-[(2R,3R,4S,5S,6R)-4,5-dihydroxy-6-(hydroxymethyl)-2-[[(3S,5R,8R,9R,10R,12R,13R,14R,17S)-12-hydroxy-4,4,8,10,14-pentamethyl-17-[(2S)-6-methyl-2-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-[[(2R,3R,4S,5S)-4-hydroxy-5-(hydroxymethyl)-3-[(2S,3R,4S,5R)-3,4,5-trihydroxyoxan-2-yl]oxyoxolan-2-yl]oxymethyl]oxan-2-yl]oxyhept-5-en-2-yl]-2,3,5,6,7,9,11,12,13,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-yl]oxy]oxan-3-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol | ||
SMILES | CC(=CCCC(C)(C1CCC2(C1C(CC3C2(CCC4C3(CCC(C4(C)C)OC5C(C(C(C(O5)CO)O)O)OC6C(C(C(C(O6)CO)O)O)O)C)C)O)C)OC7C(C(C(C(O7)COC8C(C(C(O8)CO)O)OC9C(C(C(CO9)O)O)O)O)O)O)C | ||
Standard InChIKey | UEBIBJSWHIZNCA-BGPUAMRSSA-N | ||
Standard InChI | InChI=1S/C58H98O26/c1-24(2)10-9-14-58(8,84-51-46(74)42(70)39(67)31(80-51)23-76-52-47(40(68)30(21-61)78-52)82-49-44(72)36(64)27(63)22-75-49)25-11-16-57(7)35(25)26(62)18-33-55(5)15-13-34(54(3,4)32(55)12-17-56(33,57)6)81-53-48(43(71)38(66)29(20-60)79-53)83-50-45(73)41(69)37(65)28(19-59)77-50/h10,25-53,59-74H,9,11-23H2,1-8H3/t25-,26+,27+,28+,29+,30-,31+,32-,33+,34-,35-,36-,37+,38+,39+,40-,41-,42-,43-,44+,45+,46+,47+,48+,49-,50-,51-,52+,53-,55-,56+,57+,58-/m0/s1 | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
Structure Identification | Zhongguo Zhong Yao Za Zhi. 2013 Sep;38(17):2807-17.Chemical constituents from roots and rhizomes of Panax ginseng cultivated in Jilin province.[Pubmed: 24380303]
|
Ginsenoside Ra2 Dilution Calculator
Ginsenoside Ra2 Molarity Calculator
1 mg | 5 mg | 10 mg | 20 mg | 25 mg | |
1 mM | 0.8255 mL | 4.1275 mL | 8.255 mL | 16.51 mL | 20.6374 mL |
5 mM | 0.1651 mL | 0.8255 mL | 1.651 mL | 3.302 mL | 4.1275 mL |
10 mM | 0.0825 mL | 0.4127 mL | 0.8255 mL | 1.651 mL | 2.0637 mL |
50 mM | 0.0165 mL | 0.0825 mL | 0.1651 mL | 0.3302 mL | 0.4127 mL |
100 mM | 0.0083 mL | 0.0413 mL | 0.0825 mL | 0.1651 mL | 0.2064 mL |
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations. |
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
- Panasenoside
Catalog No.:BCN8554
CAS No.:31512-06-8
- Trans sodium crocetinate
Catalog No.:BCN8553
CAS No.:591230-99-8
- Ilexsaponin B2
Catalog No.:BCN8552
CAS No.:108906-69-0
- 28-Demethyl-beta-amyrone
Catalog No.:BCN8551
CAS No.:73493-60-4
- Vinaginsenoside R3
Catalog No.:BCN8550
CAS No.:156012-92-9
- Cistanoside F
Catalog No.:BCN8549
CAS No.:97411-47-7
- Rhein-8-glucoside
Catalog No.:BCN8548
CAS No.:34298-86-7
- Dihydroartemisinic acid
Catalog No.:BCN8547
CAS No.:85031-59-0
- Acetyl Perisesaccharide C
Catalog No.:BCN8666
CAS No.:110764-09-5
- Z-VDVAD-FMK
Catalog No.:BCC1138
CAS No.:N/A
- Isoboonein
Catalog No.:BCN4545
CAS No.:99946-04-0
- Bullatantriol
Catalog No.:BCN4543
CAS No.:99933-32-1
- Uvarigranol B
Catalog No.:BCN8556
CAS No.:164204-79-9
- Rupestonic acid
Catalog No.:BCN8557
CAS No.:115473-63-7
- Dihydropalmatine
Catalog No.:BCN8558
CAS No.:26067-60-7
- Anemarrhenasaponin I
Catalog No.:BCN8559
CAS No.:163047-21-0
- Glabrolide
Catalog No.:BCN8560
CAS No.:10401-33-9
- Acanthopanaxoside B
Catalog No.:BCN8561
CAS No.:915792-03-9
- Erigoster B
Catalog No.:BCN8562
CAS No.:849777-61-3
- 3'-Demethylnobiletin
Catalog No.:BCN8563
CAS No.:112448-39-2
- Lancifodilactone F
Catalog No.:BCN8564
CAS No.:850878-47-6
- Periplocoside N
Catalog No.:BCN8565
CAS No.:39946-41-3
- 3-Feruloyl-1-Sinapoyl sucrose
Catalog No.:BCN8566
CAS No.:98942-06-4
- Vinaginsenoside R8
Catalog No.:BCN8567
CAS No.:156042-22-7
[Chemical constituents from roots and rhizomes of Panax ginseng cultivated in Jilin province].[Pubmed:24380303]
Zhongguo Zhong Yao Za Zhi. 2013 Sep;38(17):2807-17.
The chemical constituents of the roots and rhizomes of Panax ginseng were systematically investigated by various column chromatographic methods including Amberlite XAD-4 macroporous adsorptive resins and silica gel as well as high-performance liquid chromatography, and their chemical structures were identified by physico-chemical properties and spectral analyses. Twenty-eight compounds were isolated from the 70% ethanolic-aqueous extract and identified as koryoginsenoside R1 (1), ginsenoside Rg1 (2), ginsenoside Rf (3), notoginsenoside R2 (4), ginsenoside Rg2 (5), notoginsenoside Fe (6), ginsenjilinol (7), ginsenoside Re5 (8), noto-ginsenoside N (9), notoginsenoside R1 (10), ginsenoside Re2 (11), ginsenoside Re1 (12), ginsenoside Re (13), ginsenoside Rs2 (14), ginsenoside Ro methyl ester (15), ginsenoside Rd (16), ginsenoside Re3 (17), ginsenoside Re4 (18), 20-gluco-ginsenoside Rf (19), ginsenoside Ro (20), ginsenoside Rc (21), quinquenoside-R1 (22), Ginsenoside Ra2 (23), ginsenoside Rb1 (24), ginsenoside Ra1 (25), ginsenoside Ra3 (26), ginsenoside Rb2 (27), and notoginsenoside R4 (28). All isolated compounds are 20 (S) -protopanaxadiol or protopanaxatriol type triterpenoid saponins. Compound 1 was isolated from the roots and rhizomes of P. ginseng cultivated in Jilin province for the first time and compound 6 was isolated from the roots and rhizomes of P. ginseng for the first time. The 1H-NMR data of compounds 6, 14 and 19 were assigned for the first time.