Kanshone CCAS# 117634-64-7 |
2D Structure
Quality Control & MSDS
3D structure
Package In Stock
Number of papers citing our products
Cas No. | 117634-64-7 | SDF | Download SDF |
PubChem ID | 15625237.0 | Appearance | Powder |
Formula | C15H20O3 | M.Wt | 248.32 |
Type of Compound | Sesquiterpenoids | Storage | Desiccate at -20°C |
Solubility | Soluble in Chloroform,Dichloromethane,Ethyl Acetate,DMSO,Acetone,etc. | ||
Chemical Name | (1R,3S,6R,7R,8S,10R)-6,7,9,9-tetramethyl-2-oxatetracyclo[5.5.0.01,3.08,10]dodecane-11,12-dione | ||
SMILES | CC1CCC2C3(C1(C4C(C4(C)C)C(=O)C3=O)C)O2 | ||
Standard InChIKey | NGUGLLPTHUYIGI-CKRUZVNXSA-N | ||
Standard InChI | InChI=1S/C15H20O3/c1-7-5-6-8-15(18-8)12(17)10(16)9-11(13(9,2)3)14(7,15)4/h7-9,11H,5-6H2,1-4H3/t7-,8+,9-,11+,14-,15-/m1/s1 | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
Kanshone C Dilution Calculator
Kanshone C Molarity Calculator
1 mg | 5 mg | 10 mg | 20 mg | 25 mg | |
1 mM | 4.0271 mL | 20.1353 mL | 40.2706 mL | 80.5412 mL | 100.6765 mL |
5 mM | 0.8054 mL | 4.0271 mL | 8.0541 mL | 16.1082 mL | 20.1353 mL |
10 mM | 0.4027 mL | 2.0135 mL | 4.0271 mL | 8.0541 mL | 10.0677 mL |
50 mM | 0.0805 mL | 0.4027 mL | 0.8054 mL | 1.6108 mL | 2.0135 mL |
100 mM | 0.0403 mL | 0.2014 mL | 0.4027 mL | 0.8054 mL | 1.0068 mL |
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations. |
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
- Hypoglaunine D
Catalog No.:BCX1296
CAS No.:220751-00-8
- Amaroswerin
Catalog No.:BCX1295
CAS No.:21233-18-1
- t-OMe-Byakangelicin
Catalog No.:BCX1294
CAS No.:79638-04-3
- Ajugasterone C 2-acetate
Catalog No.:BCX1293
CAS No.:154510-93-7
- Chaparrinone
Catalog No.:BCX1292
CAS No.:22611-34-3
- Physcion-8-O-β-gentiobioside
Catalog No.:BCX1291
CAS No.:84268-38-2
- Wistin
Catalog No.:BCX1290
CAS No.:19046-26-5
- Limocitrin 3-O-β-D-glucopyranoside
Catalog No.:BCX1289
CAS No.:38836-51-0
- Ajugose
Catalog No.:BCX1288
CAS No.:512-72-1
- Dihydrocatalpol
Catalog No.:BCX1287
CAS No.:6736-86-3
- Isobellidifolin
Catalog No.:BCX1286
CAS No.:552-00-1
- Napelline
Catalog No.:BCX1285
CAS No.:5008-52-6
- Lyciumin A
Catalog No.:BCX1298
CAS No.:125708-06-7
- Xylopine
Catalog No.:BCX1299
CAS No.:517-71-5
- 16α-hydroxy-3-oxo-lanosta-7,9(11),24-trien-21-oic acid
Catalog No.:BCX1300
CAS No.:862109-64-6
- Kakkanin
Catalog No.:BCX1301
CAS No.:63770-91-2
- Theasaponin E1
Catalog No.:BCX1302
CAS No.:220114-28-3
- Lyciumin B
Catalog No.:BCX1303
CAS No.:125756-66-3
- Poststerone
Catalog No.:BCX1304
CAS No.:10162-99-9
- Corymbiferin
Catalog No.:BCX1305
CAS No.:5042-09-1
- Shinjulactone M
Catalog No.:BCX1306
CAS No.:103630-27-9
- 13α,21-Dihydroeurycomanone
Catalog No.:BCX1307
CAS No.:129587-06-0
- Entadamide A
Catalog No.:BCX1308
CAS No.:100477-88-1
- 3'-O-Angeloylhamaudol
Catalog No.:BCX1309
CAS No.:84272-84-4
Metabolome and transcriptome associated analysis of sesquiterpenoid metabolism in Nardostachys jatamansi.[Pubmed:36523614]
Front Plant Sci. 2022 Nov 29;13:1041321.
BACKGROUND: Nardostachys jatamansi, an extremely endangered valuable plant of the alpine Himalayas, can synthesize specific sesquiterpenoids with multiple effective therapies and is widely exploited for the preparation of drugs, cosmetics and even religious functions (e.g., well-known spikenard). However, how accumulation trend of the sesquiterpenoids in tissues and the molecular mechanisms underlying the production of the active ingredients are not well understood. METHODS: The single-molecule real-time (SMRT) and RNA-seq transcriptome sequencing were combined to analyse the roots, rhizomes, leaves, flowers and anthocaulus of N. jatamansi. The phytochemical analysis was performed by gas chromatography‒mass spectrometry (GC‒MS) and ultrahigh-performance liquid chromatography (UPLC). RESULTS: A high-quality full-length reference transcriptome with 26,503 unigenes was generated for the first time. For volatile components, a total of sixty-five compounds were successfully identified, including fifty sesquiterpenoids. Their accumulation levels in five tissues were significantly varied, and most of the sesquiterpenoids were mainly enriched in roots and rhizomes. In addition, five aromatic compounds were only detected in flowers, which may help the plant attract insects for pollination. For nonvolatile ingredients, nardosinone-type sesquiterpenoids (nardosinone, Kanshone C, and isonardosinone) were detected almost exclusively in roots and rhizomes. The candidate genes associated with sesquiterpenoid biosynthesis were identified by transcriptome analysis. Consistently, it was found that most biosynthesis genes were abundantly expressed in the roots and rhizomes according to the functional enrichment and expression patterns results. There was a positive correlation between the expression profile of genes related to the biosynthesis and the accumulation level of sesquiterpenoids in tissues. Gene family function analysis identified 28 NjTPSs and 43 NjCYPs that may be involved in the biosynthesis of the corresponding sesquiterpenoids. Furthermore, gene family functional analysis and gene coexpression network analysis revealed 28 NjTPSs and 43 NjCYPs associated with nardosinone-type sesquiterpenoid biosynthesis. CONCLUSION: Our research results reveal the framework of sesquiterpenoids accumulation and biosynthesis in plant tissues and provide valuable support for further studies to elucidate the molecular mechanisms of sesquiterpenoid regulation and accumulation in N. jatamansi and will also contribute to the comprehensive utilization of this alpine plant.
Six kanshone C-derived sesquiterpenoid hybrids nardochalaristolones A-D, nardoflavaristolone A and dinardokanshone F from Nardostachys jatamansi DC.[Pubmed:30092385]
Bioorg Chem. 2018 Dec;81:35-43.
Four sesquiterpenoid-chalcone hybrids (nardochalaristolones A-D, 1-4), a pair of epimeric sesquiterpenoid-flavonone hybrids ((2'S)- and (2'R)-nardoflavaristolone A, 5 and 6), and a sesquiterpenoid dimer (dinardokanshone F, 7), all sharing a Kanshone C-derived sesquiterpenoid unit, were isolated from the underground parts of Nardostachys jatamansi (D.Don) DC. Their structures were elucidated by analysis of the extensive spectroscopic data, and the absolute configurations were established by analysis of 2D NMR spectroscopic data including NOESY data, combined with comparisons of experimental and calculated electronic circular dichroism spectra. Further, the plausible biosynthetic pathways for these compounds were proposed. And the results of SERT activity assay revealed that nardochalaristolones C-D (3 and 4) and nardoflavaristolone A (5 and 6) significantly enhanced SERT activity, while other compounds didn't show any SERT regulatory activities.
Novel serotonin transporter regulators: Natural aristolane- and nardosinane- types of sesquiterpenoids from Nardostachys chinensis Batal.[Pubmed:29118341]
Sci Rep. 2017 Nov 8;7(1):15114.
Serotonin transporter (SERT) is a classic target of drug discovery for neuropsychiatric and digestive disorders, and against those disorders, plants of Nardostachys genus have been valued for centuries in the systems of Traditional Chinese Medicine, Ayurvedic and Unani. Herein, chemical investigation on the roots and rhizomes of Nardostachys chinensis Batal. led to the isolation of forty sesquiterpenoids including six new aristolane-type sesquiterpenoids and six new nardosinane-type sesquiterprenoids. Their structures were elucidated by extensive spectroscopic methods, combined with analyses of circular dichroism and single-crystal X-ray diffraction data. To explore natural product scaffolds with SERT regulating activity, a high-content assay for measurement of SERT function in vitro was conducted to evaluate the SERT regulating properties of these isolates. In conclusion, eleven compounds could be potential natural product scaffolds for developing drug candidates targeting SERT. Among which, Kanshone C of aristolane-type sesquiterpenoid inhibited SERT most strongly, while desoxo-nachinol A of nardosinane-type sesquiterpenoid instead enhanced SERT potently.