L-690,488CAS# 142523-14-6 |
2D Structure
- BMS-708163 (Avagacestat)
Catalog No.:BCC2104
CAS No.:1146699-66-2
- DAPT (GSI-IX)
Catalog No.:BCC3618
CAS No.:208255-80-5
- YO-01027 (Dibenzazepine, DBZ)
Catalog No.:BCC2100
CAS No.:209984-56-5
- Semagacestat (LY450139)
Catalog No.:BCC3610
CAS No.:425386-60-3
- Flurizan
Catalog No.:BCC2342
CAS No.:51543-40-9
- E 2012
Catalog No.:BCC1540
CAS No.:870843-42-8
Quality Control & MSDS
3D structure
Package In Stock
Number of papers citing our products
Cas No. | 142523-14-6 | SDF | Download SDF |
PubChem ID | 5132514 | Appearance | Powder |
Formula | C32H52O16P2 | M.Wt | 754.7 |
Type of Compound | N/A | Storage | Desiccate at -20°C |
Solubility | Soluble to 100 mM in ethanol and to 100 mM in DMSO | ||
Chemical Name | [[1-[bis(2,2-dimethylpropanoyloxymethoxy)phosphoryl]-1-(4-hydroxyphenoxy)ethyl]-(2,2-dimethylpropanoyloxymethoxy)phosphoryl]oxymethyl 2,2-dimethylpropanoate | ||
SMILES | CC(C)(C)C(=O)OCOP(=O)(C(C)(OC1=CC=C(C=C1)O)P(=O)(OCOC(=O)C(C)(C)C)OCOC(=O)C(C)(C)C)OCOC(=O)C(C)(C)C | ||
Standard InChIKey | LOTSPVPQHAUHCE-UHFFFAOYSA-N | ||
Standard InChI | InChI=1S/C32H52O16P2/c1-28(2,3)24(34)40-18-44-49(38,45-19-41-25(35)29(4,5)6)32(13,48-23-16-14-22(33)15-17-23)50(39,46-20-42-26(36)30(7,8)9)47-21-43-27(37)31(10,11)12/h14-17,33H,18-21H2,1-13H3 | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
Description | Cell-permeable prodrug of the potent inositol monophosphatase inhibitor L-690,330; penetrates cells more effectively than its metabolite. |
L-690,488 Dilution Calculator
L-690,488 Molarity Calculator
1 mg | 5 mg | 10 mg | 20 mg | 25 mg | |
1 mM | 1.325 mL | 6.6251 mL | 13.2503 mL | 26.5006 mL | 33.1257 mL |
5 mM | 0.265 mL | 1.325 mL | 2.6501 mL | 5.3001 mL | 6.6251 mL |
10 mM | 0.1325 mL | 0.6625 mL | 1.325 mL | 2.6501 mL | 3.3126 mL |
50 mM | 0.0265 mL | 0.1325 mL | 0.265 mL | 0.53 mL | 0.6625 mL |
100 mM | 0.0133 mL | 0.0663 mL | 0.1325 mL | 0.265 mL | 0.3313 mL |
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations. |
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
- MK-5172 sodium salt
Catalog No.:BCC1765
CAS No.:1425038-27-2
- 19-Nortestosterone acetate
Catalog No.:BCC8445
CAS No.:1425-10-1
- Glyasperin A
Catalog No.:BCN6228
CAS No.:142474-52-0
- 3-O-beta-D-apiofuranosyl(1-2)-beta-D-glucopyranosyl rhamnocitrin 4-O-beta-D-glucopyranoside
Catalog No.:BCN8141
CAS No.:142473-99-2
- Amthamine dihydrobromide
Catalog No.:BCC6744
CAS No.:142457-00-9
- Lobetyolinin
Catalog No.:BCN3322
CAS No.:142451-48-7
- Myricetin 3-O-beta-D-xylopyranosyl(1-2)-beta-D-glucopyranoside
Catalog No.:BCN8140
CAS No.:142449-93-2
- NHS-SS-Biotin
Catalog No.:BCC3581
CAS No.:142439-92-7
- Crovatin
Catalog No.:BCN2517
CAS No.:142409-09-4
- Mesterolone
Catalog No.:BCC9023
CAS No.:1424-00-6
- Didemethylpseudoaspidin AA
Catalog No.:BCN3777
CAS No.:142382-28-3
- 7alpha-Hydroxy-4,11-cadinadiene-3,8-dione
Catalog No.:BCN7057
CAS No.:1423809-64-6
- L-690,330
Catalog No.:BCC5666
CAS No.:142523-38-4
- 1,2,3,4,7-Pentamethoxy-9H-xanthen-9-one
Catalog No.:BCN1570
CAS No.:14254-96-7
- Cimidahurinine
Catalog No.:BCN6229
CAS No.:142542-89-0
- Sageone
Catalog No.:BCN3144
CAS No.:142546-15-4
- A 484954
Catalog No.:BCC6203
CAS No.:142557-61-7
- Glyasperin D
Catalog No.:BCN6836
CAS No.:142561-10-2
- Calanolide E
Catalog No.:BCN6230
CAS No.:142566-61-8
- Asperuloside
Catalog No.:BCN6231
CAS No.:14259-45-1
- Narirutin
Catalog No.:BCN6300
CAS No.:14259-46-2
- Didymin
Catalog No.:BCN3327
CAS No.:14259-47-3
- Deacetylasperulosidic acid
Catalog No.:BCN3323
CAS No.:14259-55-3
- Daphylloside
Catalog No.:BCN6232
CAS No.:14260-99-2
Effects of L-690,488, a prodrug of the bisphosphonate inositol monophosphatase inhibitor L-690,330, on phosphatidylinositol cycle markers.[Pubmed:8035344]
J Pharmacol Exp Ther. 1994 Jul;270(1):70-6.
In order to enhance the entry into cells of L-690,330, a bisphosphonate inhibitor of inositol monophosphatase (IMPase; a key, enzyme in the phosphatidylinositol (Pl) cell signaling pathway), the tetrapivaloyloxymethyl ester prodrug, L-690,488 [tetrapivaloyloxymethyl 1-(4-hydroxyphenoxy)ethane-1,1-bisphosphonate], was synthesized. The effects of L-690,488 were studied in cholinergically (carbachol)-stimulated rat cortical slices and Chinese hamster ovary cells stably transfected with the human muscarinic m1 receptor (m1 CHO cells). The accumulation of [3H]inositol monophosphates or [3H]cytidine monophosphorylphosphatidate ([3H]CMP-PA) after [3H]inositol or [3H]cytidine prelabeling, respectively, and inositol 1,4,5-trisphosphate and inositol 1,3,4,5-tetrakisphosphate mass were measured. In rat cortical slices and m1 CHO cells, the maximum response and time course of accumulation of [3H]inositol monophosphates for L-690,488 and lithium were similar. However, the concentrations of L-690,488 required to produce these effects (EC50 values of 3.7 +/- 0.9 and 1.0 +/- 0.2 microM in cortical slices and m1 CHO cells, respectively) were much lower than with lithium (0.3-1.5 mM). Likewise, the time course and maximum accumulation of [3H] CMP-PA in L-690,488-treated m1 CHO cells was similar to lithium but L-690,488 was again much more potent (EC50 values = 3.5 +/- 0.3 microM and 0.52 +/- 0.03 mM for L-690,488 and lithium, respectively). In addition, L-690,488 attenuated the carbachol-induced elevation of inositol 1,4,5-trisphosphate and inositol 1,3,4,5-tetrakisphosphate in m1 CHO cells, an effect reported previously with lithium. These results are all consistent with L-690,488 and lithium both depleting intracellular inositol as a consequence of inhibition of IMPase. That these effects of L-690,488 on the PI cycle are indeed due to inositol depletion is shown by the observation that the effects of L-690,488 on CMP-PA accumulation could be overcome by addition of exogenous myo-inositol (EC50 = 1.7 +/- 0.5 mM). These data show that inhibition of IMPase produces effects on the PI cycle comparable to lithium. As a corollary, the effects of lithium on the PI cycle are therefore consistent with its major mechanism of action being inhibition of IMPase.
Stimulatory effect of lithium on glucose transport in rat adipocytes is not mediated by elevation of IP1.[Pubmed:9688629]
Am J Physiol. 1998 Aug;275(2):E272-7.
Lithium has been shown to increase glucose uptake in skeletal muscle and adipose tissues. The therapeutic effect of lithium on bipolar disease is thought to be mediated by its inhibitory effect on myo-inositol-1-monophosphatase (IMPase). We tested the hypothesis that the stimulatory effect of lithium on glucose uptake results from inhibition of IMPase and the resultant accumulation of inositol monophosphates (IP1) by comparing the effects of lithium and a selective IMPase inhibitor, L-690,488, on isolated rat adipocytes. Insulin produced a concentration-dependent stimulation of 2-deoxy-D-[14C]glucose (2-DG) transport (10 microU/ml caused half-maximal activation). Acute exposure to lithium stimulated basal glucose transport activity in a concentration-dependent manner, with a threefold stimulation at 30 mM lithium. Lithium also potentiated insulin-stimulated 2-DG transport. Lithium produced a concomitant increase in IP1 accumulation. In contrast, L-690,488 increased IP1 to levels comparable to those of lithium without stimulatory effects on 2-DG transport. These results demonstrate that stimulatory effects of lithium on glucose transport are not mediated by the inhibition of IMPase and subsequent accumulation of IP1 in rat adipocytes.