LinderoneCAS# 1782-79-2 |
Quality Control & MSDS
Number of papers citing our products
Chemical structure
3D structure
Cas No. | 1782-79-2 | SDF | Download SDF |
PubChem ID | 11208407 | Appearance | Orange cryst. |
Formula | C16H14O5 | M.Wt | 286.3 |
Type of Compound | Chalcones | Storage | Desiccate at -20°C |
Solubility | Soluble in Chloroform,Dichloromethane,Ethyl Acetate,DMSO,Acetone,etc. | ||
Chemical Name | 4-hydroxy-2,3-dimethoxy-5-[(E)-3-phenylprop-2-enoyl]cyclopenta-2,4-dien-1-one | ||
SMILES | COC1=C(C(=O)C(=C1O)C(=O)C=CC2=CC=CC=C2)OC | ||
Standard InChIKey | BACYSGZEZYMOBO-CMDGGOBGSA-N | ||
Standard InChI | InChI=1S/C16H14O5/c1-20-15-13(18)12(14(19)16(15)21-2)11(17)9-8-10-6-4-3-5-7-10/h3-9,18H,1-2H3/b9-8+ | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
Description | 1. Linderone A shows anticancer activity against A549 non-small cell lung cancer cells and PC-3 prostate adenocarcinoma cell line. |
Linderone Dilution Calculator
Linderone Molarity Calculator
1 mg | 5 mg | 10 mg | 20 mg | 25 mg | |
1 mM | 3.4928 mL | 17.4642 mL | 34.9284 mL | 69.8568 mL | 87.321 mL |
5 mM | 0.6986 mL | 3.4928 mL | 6.9857 mL | 13.9714 mL | 17.4642 mL |
10 mM | 0.3493 mL | 1.7464 mL | 3.4928 mL | 6.9857 mL | 8.7321 mL |
50 mM | 0.0699 mL | 0.3493 mL | 0.6986 mL | 1.3971 mL | 1.7464 mL |
100 mM | 0.0349 mL | 0.1746 mL | 0.3493 mL | 0.6986 mL | 0.8732 mL |
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations. |
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
- Hardwickiic acid
Catalog No.:BCN1132
CAS No.:1782-65-6
- 6,7,4'-Trihydroxyisoflavone
Catalog No.:BCN2910
CAS No.:17817-31-1
- H-Asp-OMe
Catalog No.:BCC2884
CAS No.:17812-32-7
- 3-Deoxyzinnolide
Catalog No.:BCN4799
CAS No.:17811-32-4
- Bacopasaponin C
Catalog No.:BCC8124
CAS No.:178064-13-6
- Nociceptin (1-13)NH2
Catalog No.:BCC5749
CAS No.:178064-02-3
- Aescigenin
Catalog No.:BCC8293
CAS No.:17806-68-7
- Fmoc-D-Phe(4-NO2)-OH
Catalog No.:BCC3278
CAS No.:177966-63-1
- Allopurinol Sodium
Catalog No.:BCC4886
CAS No.:17795-21-0
- Sauchinone
Catalog No.:BCN2299
CAS No.:177931-17-8
- Clematichinenoside C
Catalog No.:BCN7850
CAS No.:177912-24-2
- Boc-His-OH
Catalog No.:BCC3398
CAS No.:17791-52-5
- Tetrahymanone
Catalog No.:BCN6932
CAS No.:17822-06-9
- Calystegine B3
Catalog No.:BCN1880
CAS No.:178231-95-3
- Orphanin FQ (1-11)
Catalog No.:BCC6085
CAS No.:178249-41-7
- Nociceptin (1-7)
Catalog No.:BCC5738
CAS No.:178249-42-8
- H-D-Asp-OH
Catalog No.:BCC2894
CAS No.:1783-96-6
- 12-Hydroxy-6-epi-albrassitriol
Catalog No.:BCN7460
CAS No.:178330-78-4
- Tos-Arg-OMe.HCl
Catalog No.:BCC2874
CAS No.:1784-03-8
- AR-R 17779 hydrochloride
Catalog No.:BCC7827
CAS No.:178419-42-6
- Agrostophyllidin
Catalog No.:BCN3598
CAS No.:178439-50-4
- 6-epi-Albrassitriol
Catalog No.:BCN7342
CAS No.:178456-58-1
- Vitexin -4''-O-glucoside
Catalog No.:BCN3054
CAS No.:178468-00-3
- Hoechst 33342 analog
Catalog No.:BCC1630
CAS No.:178481-68-0
Chemical properties and biological activities of cyclopentenediones: a review.[Pubmed:24605879]
Mini Rev Med Chem. 2014 Apr;14(4):322-31.
Cyclopentenediones (CPDs) are secondary metabolites of higher plants, fungi, algae, cyanobacteria and bacteria. A common denominator of CPDs is the cyclopent-4-ene-1,3-dione skeleton (1), which is modified by several functional groups. The heterogeneity of these substitutions is reflected in around one hundred CPDs reported to date. Most of the derivatives were isolated primarily from plant sources. Synthetic analogues were then prepared with new biological activities and more interesting pharmacological potential. Antifungal substances called coruscanones (2, 3) are the most studied of the CPDs. Other intensely investigated CPDs include lucidone (4), Linderone (5), asterredione (6), involutone (7), nostotrebin 6 (8), TX-1123 (9), G2201-C (10), madindolines (11, 12) and many others. In addition to antibacterial and antifungal effects, a broad spectrum of biological activities for CPDs has been reported in the past two decades, especially anti-inflammatory, cytostatic and specific enzyme inhibitory activities. The CPD skeleton has been identified in a number of substances isolated from the plant kingdom; hence, CPDs can be referred to as a new group of natural bioactive substances. The main goal of this review is to define CPDs with respect to basic chemistry, isolation, synthetic approaches and description of their biological effects. Special attention is given to a detailed view into biological activities of CPDs in vitro and their phamacological potential.
Bi-linderone, a highly modified methyl-linderone dimer from Lindera aggregata with activity toward improvement of insulin sensitivity in vitro.[Pubmed:20420414]
Org Lett. 2010 May 21;12(10):2354-7.
Bi-Linderone (1) was isolated as racemate from the traditional Chinese medicinal plant Lindera aggregata. The structure elucidation of bi-Linderone was reported on the basis of extensive analysis of NMR spectra and crystal X-ray diffraction. Bi-Linderone has an unprecedented spirocyclopentenedione-containing carbon skeleton and showed significant activity against glucosamine-induced insulin resistance in HepG2 cells at a concentration of 1 microg/mL.
Biomimetic total syntheses of linderaspirone A and bi-linderone and revisions of their biosynthetic pathways.[Pubmed:21446662]
Org Lett. 2011 May 6;13(9):2192-5.
Simple exposure to sunlight is sufficient for triggering photochemical [2 + 2] cycloaddition-Cope or radical rearrangement cascades in the naturally occurring methyl Linderone, leading to efficient biomimetic total syntheses of linderaspirone A and bi-Linderone, two recently discovered bioactive spirocyclopentenedione natural products.
Flavonoids and linderone from Lindera oxyphylla and their bioactivities.[Pubmed:23173924]
Comb Chem High Throughput Screen. 2013 Feb;16(2):160-6.
A new Linderone A, namely 2-cinnamoyl-3-hydroxy-4, 5-dimethoxycyclopenta-2, 4-dienone (5), together with three known flavonoids (1-3) and one Linderone (4), were isolated from the bark of Lindera oxyphylla. Extensive spectroscopic analysis including 1D and 2D-NMR spectra determined their sturctures. In addition, the antioxidant activity of all the compounds has been determined using 2, 2-diphenyl-1-picrylhydrazyl radical scavenging (DPPH), ferric reducing antioxidant power (FRAP) and ferrous ion chelating (FIC) methods. Compound 3 showed excellent DPPH scavenging activity with IC50% value of 8.5 +/- 0.004% (mug/mL) which is comparable with vitamin C. This compound, also showed an absorbance value of 1.00 +/- 0.06% through FRAP test when compared with Butyl Hydroxy Aniline (BHA). However, FIC showed low activity for all the isolated compounds (chelating activity less than 50%) in comparison with ethylene diamine tetra acetic acid (EDTA). Anticancer activity for all compounds has also been measured on A375 human melanoma, HT-29 colon adenocarcinoma, MCF-7 human breast adenocarcinoma cells, WRL-68 normal hepatic cells, A549 non-small cell lung cancer cells and PC-3 prostate adenocarcinoma cell line. Compound 1 showed A549=65.03%, PC-3=30.12%, MCF-7=47.67, compound 2 showed PC-3=90.13%, compound 3 showed MCF-7=79.57 and for compound 5 MCF-7 is 96.33.