Calystegine B3CAS# 178231-95-3 |
2D Structure
- Calystegine B2
Catalog No.:BCN1879
CAS No.:127414-85-1
- Calystegine B4
Catalog No.:BCN1881
CAS No.:184046-85-3
Quality Control & MSDS
3D structure
Package In Stock
Number of papers citing our products
Cas No. | 178231-95-3 | SDF | Download SDF |
PubChem ID | 92212920 | Appearance | Powder |
Formula | C7H13NO4 | M.Wt | 175.18 |
Type of Compound | Alkaloids | Storage | Desiccate at -20°C |
Solubility | Soluble in Chloroform,Dichloromethane,Ethyl Acetate,DMSO,Acetone,etc. | ||
Chemical Name | (1S,2S,3R,4R,5S)-8-azabicyclo[3.2.1]octane-2,3,4,5-tetrol | ||
SMILES | C1CC2(C(C(C(C1N2)O)O)O)O | ||
Standard InChIKey | FXFBVZOJVHCEDO-TYDWOXHJSA-N | ||
Standard InChI | InChI=1S/C7H13NO4/c9-4-3-1-2-7(12,8-3)6(11)5(4)10/h3-6,8-12H,1-2H2/t3-,4-,5+,6+,7-/m0/s1 | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
Description | 1. Calystegine B3 is a highly specific inhibitor for Man2C1 among various α-mannosidases prepared from rat liver, it could thus serve as a potent tool for the development of a highly specific in vivo inhibitor for Man2C1. |
Calystegine B3 Dilution Calculator
Calystegine B3 Molarity Calculator
1 mg | 5 mg | 10 mg | 20 mg | 25 mg | |
1 mM | 5.7084 mL | 28.5421 mL | 57.0841 mL | 114.1683 mL | 142.7104 mL |
5 mM | 1.1417 mL | 5.7084 mL | 11.4168 mL | 22.8337 mL | 28.5421 mL |
10 mM | 0.5708 mL | 2.8542 mL | 5.7084 mL | 11.4168 mL | 14.271 mL |
50 mM | 0.1142 mL | 0.5708 mL | 1.1417 mL | 2.2834 mL | 2.8542 mL |
100 mM | 0.0571 mL | 0.2854 mL | 0.5708 mL | 1.1417 mL | 1.4271 mL |
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations. |
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
- Tetrahymanone
Catalog No.:BCN6932
CAS No.:17822-06-9
- Linderone
Catalog No.:BCN1133
CAS No.:1782-79-2
- Hardwickiic acid
Catalog No.:BCN1132
CAS No.:1782-65-6
- 6,7,4'-Trihydroxyisoflavone
Catalog No.:BCN2910
CAS No.:17817-31-1
- H-Asp-OMe
Catalog No.:BCC2884
CAS No.:17812-32-7
- 3-Deoxyzinnolide
Catalog No.:BCN4799
CAS No.:17811-32-4
- Bacopasaponin C
Catalog No.:BCC8124
CAS No.:178064-13-6
- Nociceptin (1-13)NH2
Catalog No.:BCC5749
CAS No.:178064-02-3
- Aescigenin
Catalog No.:BCC8293
CAS No.:17806-68-7
- Fmoc-D-Phe(4-NO2)-OH
Catalog No.:BCC3278
CAS No.:177966-63-1
- Allopurinol Sodium
Catalog No.:BCC4886
CAS No.:17795-21-0
- Sauchinone
Catalog No.:BCN2299
CAS No.:177931-17-8
- Orphanin FQ (1-11)
Catalog No.:BCC6085
CAS No.:178249-41-7
- Nociceptin (1-7)
Catalog No.:BCC5738
CAS No.:178249-42-8
- H-D-Asp-OH
Catalog No.:BCC2894
CAS No.:1783-96-6
- 12-Hydroxy-6-epi-albrassitriol
Catalog No.:BCN7460
CAS No.:178330-78-4
- Tos-Arg-OMe.HCl
Catalog No.:BCC2874
CAS No.:1784-03-8
- AR-R 17779 hydrochloride
Catalog No.:BCC7827
CAS No.:178419-42-6
- Agrostophyllidin
Catalog No.:BCN3598
CAS No.:178439-50-4
- 6-epi-Albrassitriol
Catalog No.:BCN7342
CAS No.:178456-58-1
- Vitexin -4''-O-glucoside
Catalog No.:BCN3054
CAS No.:178468-00-3
- Hoechst 33342 analog
Catalog No.:BCC1630
CAS No.:178481-68-0
- Prilocaine hydrochloride
Catalog No.:BCC4288
CAS No.:1786-81-8
- ZD 2079
Catalog No.:BCC5878
CAS No.:178600-17-4
Docking and SAR studies of calystegines: binding orientation and influence on pharmacological chaperone effects for Gaucher's disease.[Pubmed:24657053]
Bioorg Med Chem. 2014 Apr 15;22(8):2435-41.
We report on the identification of the required configuration and binding orientation of nor-tropane alkaloid calystegines against beta-glucocerebrosidase. Calystegine B2 is a potent competitive inhibitor of human lysosomal beta-glucocerebrosidase with Ki value of 3.3 muM. A molecular docking study revealed that calystegine B2 had a favorable van der Waals interactions (Phe128, Trp179, and Phe246) and the hydrogen bonding (Glu235, Glu340, Asp127, Trp179, Asn234, Trp381 and Asn396) was similar to that of isofagomine. All calystegine isomers bound into the same active site as calystegine B2 and the essential hydrogen bonds formed to Asp127, Glu235 and Glu340 were maintained. However, their binding orientations were obviously different. Calystegine A3 bound to beta-glucocerebrosidase with the same orientations as calystegine B2 (Type 1), while Calystegine B3 and B4 had different binding orientations (Type 2). It is noteworthy that Type 1 orientated calystegines B2 and A3 effectively stabilized beta-glucocerebrosidase, and consequently increased intracellular beta-glucocerebrosidase activities in N370S fibroblasts, while Type 2 orientated calystegines B3 and B4 could not keep the enzyme activity. These results clearly indicate that the binding orientations of calystegines are changed by the configuration of the hydroxyl groups on the nor-tropane ring and the suitable binding orientation is a requirement for achieving a strong affinity to beta-glucocerebrosidase.
Calystegine B3 as a specific inhibitor for cytoplasmic alpha-mannosidase, Man2C1.[Pubmed:21217149]
J Biochem. 2011 Apr;149(4):415-22.
Cytoplasmic alpha-mannosidase (Man2C1) has been implicated in non-lysosomal catabolism of free oligosaccharides derived from N-linked glycans accumulated in the cytosol. Suppression of Man2C1 expression reportedly induces apoptosis in various cell lines, but its molecular mechanism remains unclear. Development of a specific inhibitor for Man2C1 is critical to understanding its biological significance. In this study, we identified a plant-derived alkaloid, calystegine B(3), as a potent specific inhibitor for Man2C1 activity. Biochemical enzyme assay revealed that calystegine B(3) was a highly specific inhibitor for Man2C1 among various alpha-mannosidases prepared from rat liver. Consistent with this in vitro result, an in vivo experiment also showed that treatment of mammalian-derived cultured cells with this compound resulted in drastic change in both structure and quantity of free oligosaccharides in the cytosol, whereas no apparent change was seen in cell-surface oligosaccharides. Calystegine B(3) could thus serve as a potent tool for the development of a highly specific in vivo inhibitor for Man2C1.