Nocamycin ICAS# 78339-49-8 |
Quality Control & MSDS
Number of papers citing our products
Chemical structure
3D structure
Cas No. | 78339-49-8 | SDF | Download SDF |
PubChem ID | 54686005 | Appearance | Powder |
Formula | C26H33NO9 | M.Wt | 503.55 |
Type of Compound | Alkaloids | Storage | Desiccate at -20°C |
Solubility | Soluble in Chloroform,Dichloromethane,Ethyl Acetate,DMSO,Acetone,etc. | ||
SMILES | CC1C2C(=O)CC3(C(O2)(C(C(O3)C)C(=O)OC)OC1C(C)C=C(C)C=CC(=C4C(=O)CNC4=O)O)C | ||
Standard InChIKey | DTURANKMSHIDDI-OZAMFLKISA-N | ||
Standard InChI | InChI=1S/C26H33NO9/c1-12(7-8-16(28)19-18(30)11-27-23(19)31)9-13(2)21-14(3)22-17(29)10-25(5)26(35-21,36-22)20(15(4)34-25)24(32)33-6/h7-9,13-15,20-22,28H,10-11H2,1-6H3,(H,27,31)/b8-7+,12-9+,19-16? | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
Description | 1. Nocamycin I shows potent antimicrobial activity and it holds great potential for antibacterial agent design. |
Targets | Antifection |
Nocamycin I Dilution Calculator
Nocamycin I Molarity Calculator
1 mg | 5 mg | 10 mg | 20 mg | 25 mg | |
1 mM | 1.9859 mL | 9.9295 mL | 19.859 mL | 39.718 mL | 49.6475 mL |
5 mM | 0.3972 mL | 1.9859 mL | 3.9718 mL | 7.9436 mL | 9.9295 mL |
10 mM | 0.1986 mL | 0.993 mL | 1.9859 mL | 3.9718 mL | 4.9648 mL |
50 mM | 0.0397 mL | 0.1986 mL | 0.3972 mL | 0.7944 mL | 0.993 mL |
100 mM | 0.0199 mL | 0.0993 mL | 0.1986 mL | 0.3972 mL | 0.4965 mL |
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations. |
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
- PCI-24781 (CRA-024781)
Catalog No.:BCC2155
CAS No.:783355-60-2
- MLN120B
Catalog No.:BCC1772
CAS No.:783348-36-7
- MRK 016
Catalog No.:BCC6070
CAS No.:783331-24-8
- H-D-1-Nal-OH
Catalog No.:BCC3281
CAS No.:78306-92-0
- 7-Ethylcamptothecin
Catalog No.:BCN2480
CAS No.:78287-27-1
- Ecliptasaponin A
Catalog No.:BCN3843
CAS No.:78285-90-2
- Nepafenac
Catalog No.:BCC1258
CAS No.:78281-72-8
- Hydroxysafflor yellow A
Catalog No.:BCN1049
CAS No.:78281-02-4
- [Orn5]-URP
Catalog No.:BCC5985
CAS No.:782485-03-4
- Paroxetine HCl
Catalog No.:BCC5054
CAS No.:78246-49-8
- 20(S)-Ginsenoside Rh2
Catalog No.:BCN1070
CAS No.:78214-33-2
- Nirtetralin
Catalog No.:BCN3755
CAS No.:78185-63-4
- Pyranojacareubin
Catalog No.:BCN7429
CAS No.:78343-62-1
- MY-5445
Catalog No.:BCC6645
CAS No.:78351-75-4
- 1,7-Dihydroxy-2,3-dimethoxyxanthone
Catalog No.:BCN7523
CAS No.:78405-33-1
- Milrinone
Catalog No.:BCC4374
CAS No.:78415-72-2
- Trequinsin hydrochloride
Catalog No.:BCC7333
CAS No.:78416-81-6
- 5,7,3'-Trihydroxy-6,4',5'-trimethoxyflavone
Catalog No.:BCN1353
CAS No.:78417-26-2
- RGB-286638
Catalog No.:BCC5519
CAS No.:784210-87-3
- RGB-286638 free base
Catalog No.:BCC5520
CAS No.:784210-88-4
- Deacetyltaxol
Catalog No.:BCN2820
CAS No.:78432-77-6
- 19-Hydroxybaccatin III
Catalog No.:BCN4330
CAS No.:78432-78-7
- 7-Epi 10-Desacetyl Paclitaxel
Catalog No.:BCC1314
CAS No.:78454-17-8
- Enterolakton
Catalog No.:BCC8170
CAS No.:78473-71-9
Identification of nocamycin biosynthetic gene cluster from Saccharothrix syringae NRRL B-16468 and generation of new nocamycin derivatives by manipulating gene cluster.[Pubmed:28599654]
Microb Cell Fact. 2017 Jun 9;16(1):100.
BACKGROUND: Nocamycins I and II, produced by the rare actinomycete Saccharothrix syringae, belong to the tetramic acid family natural products. Nocamycins show potent antimicrobial activity and they hold great potential for antibacterial agent design. However, up to now, little is known about the exact biosynthetic mechanism of nocamycin. RESULTS: In this report, we identified the gene cluster responsible for nocamycin biosynthesis from S. syringae and generated new nocamycin derivatives by manipulating its gene cluster. The biosynthetic gene cluster for nocamycin contains a 61 kb DNA locus, consisting of 21 open reading frames (ORFs). Five type I polyketide synthases (NcmAI, NcmAII, NcmAIII, NcmAIV, NcmAV) and a non-ribosomal peptide synthetase (NcmB) are proposed to be involved in synthesis of the backbone structure, a Dieckmann cyclase NcmC catalyze the releasing of linear chain and the formation of tetramic acid moiety, five enzymes (NcmEDGOP) are related to post-tailoring steps, and five enzymes (NcmNJKIM) function as regulators. Targeted inactivation of ncmB led to nocamycin production being completely abolished, which demonstrates that this gene cluster is involved in nocamycin biosynthesis. To generate new nocamycin derivatives, the gene ncmG, encoding for a cytochrome P450 oxidase, was inactivated. Two new nocamycin derivatives Nocamycin III and Nocamycin IV were isolated from the ncmG deletion mutant strain and their structures were elucidated by spectroscopic data analyses. Based on bioinformatics analysis and new derivatives isolated from gene inactivation mutant strains, a biosynthetic pathway of nocamycins was proposed. CONCLUSION: These findings provide the basis for further understanding of nocamycin biosynthetic mechanism, and set the stage to rationally engineer new nocamycin derivatives via combinatorial biosynthesis strategy.