Physalin DCAS# 54980-22-2 |
Quality Control & MSDS
Number of papers citing our products
Chemical structure
3D structure
Cas No. | 54980-22-2 | SDF | Download SDF |
PubChem ID | 431071 | Appearance | Powder |
Formula | C28H32O11 | M.Wt | 544.55 |
Type of Compound | Miscellaneous | Storage | Desiccate at -20°C |
Solubility | Soluble in Chloroform,Dichloromethane,Ethyl Acetate,DMSO,Acetone,etc. | ||
Chemical Name | 5,14,15-trihydroxy-2,9,26-trimethyl-3,19,23,28-tetraoxaoctacyclo[16.9.1.118,27.01,5.02,24.08,17.09,14.021,26]nonacos-11-ene-4,10,22,29-tetrone | ||
SMILES | CC12CC3C4(C56C1C(=O)C(O5)(C7CC(C8(CC=CC(=O)C8(C7CCC6(C(=O)O4)O)C)O)O)OCC2C(=O)O3)C | ||
Standard InChIKey | DUGJJSWZRHBJJK-UHFFFAOYSA-N | ||
Standard InChI | InChI=1S/C28H32O11/c1-22-10-17-24(3)28-18(22)19(31)27(39-28,36-11-14(22)20(32)37-17)13-9-16(30)25(34)7-4-5-15(29)23(25,2)12(13)6-8-26(28,35)21(33)38-24/h4-5,12-14,16-18,30,34-35H,6-11H2,1-3H3 | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
Description | 1. Physalin D shows antimalarial activity. 2. Physalin D displays considerable cytotoxicity against several cancer cell lines. 3. Physalin D exhibits a minimum inhibitory concentration value (MIC) against Mycobacterium tuberculosis H(37)Rv strain of 32 microg/mL. 4. Physalin D presents antinociceptive properties associated with central. |
Targets | TNF-α | Antifection |
Physalin D Dilution Calculator
Physalin D Molarity Calculator
1 mg | 5 mg | 10 mg | 20 mg | 25 mg | |
1 mM | 1.8364 mL | 9.1819 mL | 18.3638 mL | 36.7276 mL | 45.9095 mL |
5 mM | 0.3673 mL | 1.8364 mL | 3.6728 mL | 7.3455 mL | 9.1819 mL |
10 mM | 0.1836 mL | 0.9182 mL | 1.8364 mL | 3.6728 mL | 4.5909 mL |
50 mM | 0.0367 mL | 0.1836 mL | 0.3673 mL | 0.7346 mL | 0.9182 mL |
100 mM | 0.0184 mL | 0.0918 mL | 0.1836 mL | 0.3673 mL | 0.4591 mL |
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations. |
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
- Tamoxifen Citrate
Catalog No.:BCC4382
CAS No.:54965-24-1
- Albendazole
Catalog No.:BCC3718
CAS No.:54965-21-8
- Florilenalin
Catalog No.:BCN6422
CAS No.:54964-49-7
- 2-Oxopomolic acid
Catalog No.:BCN5732
CAS No.:54963-52-9
- Shikalkin
Catalog No.:BCC8359
CAS No.:54952-43-1
- Phytolaccagenic acid
Catalog No.:BCN8090
CAS No.:54928-05-1
- beta-Yohimbine
Catalog No.:BCN5733
CAS No.:549-84-8
- Quercetin 3-O-beta-D-xylopyranoside
Catalog No.:BCN2851
CAS No.:549-32-6
- 8-Oxyberberine
Catalog No.:BCN3135
CAS No.:549-21-3
- Amitriptyline HCl
Catalog No.:BCC5033
CAS No.:549-18-8
- Arborinine
Catalog No.:BCN7438
CAS No.:5489-57-6
- PD 334581
Catalog No.:BCC6300
CAS No.:548756-68-9
- Shikonin acetyl
Catalog No.:BCN2452
CAS No.:54984-93-9
- 3,3'',5-Triiodo-L-thyronine Sodium Salt
Catalog No.:BCN1419
CAS No.:55-06-1
- HYOSCINE HYDROCHLORIDE
Catalog No.:BCN8331
CAS No.:55-16-3
- Benzamide
Catalog No.:BCN5737
CAS No.:55-21-0
- Epinephrine HCl
Catalog No.:BCC4319
CAS No.:55-31-2
- McN-A 343
Catalog No.:BCC7042
CAS No.:55-45-8
- Atropine sulfate
Catalog No.:BCN2716
CAS No.:55-48-1
- 1-Phenylbiguanide hydrochloride
Catalog No.:BCC6870
CAS No.:55-57-2
- Hexamethonium Bromide
Catalog No.:BCC4561
CAS No.:55-97-0
- Busulfan
Catalog No.:BCC3742
CAS No.:55-98-1
- Embelin
Catalog No.:BCN2678
CAS No.:550-24-3
- Angustifoline
Catalog No.:BCN3205
CAS No.:550-43-6
Antinociceptive properties of physalins from Physalis angulata.[Pubmed:25396337]
J Nat Prod. 2014 Nov 26;77(11):2397-403.
Pain is the most common reason a patient sees a physician. Nevertheless, the use of typical painkillers is not completely effective in controlling all pain syndromes; therefore further attempts have been made to develop improved analgesic drugs. The present study was undertaken to evaluate the antinociceptive properties of physalins B (1), D (2), F (3), and G (4) isolated from Physalis angulata in inflammatory and centrally mediated pain tests in mice. Systemic pretreatment with 1-4 produced dose-related antinociceptive effects on the writhing and formalin tests, traditional screening tools for the assessment of analgesic drugs. On the other hand, only 3 inhibited inflammatory parameters such as hyperalgesia, edema, and local production of TNF-alpha following induction with complete Freund's adjuvant. Treatment with 1, 3, and 4 produced an antinociceptive effect on the tail flick test, suggesting a centrally mediated antinociception. Reinforcing this idea, 2-4 enhanced the mice latency reaction time during the hot plate test. Mice treated with physalins did not demonstrate motor performance alterations. These results suggest that 1-4 present antinociceptive properties associated with central, but not anti-inflammatory, events and indicate a new pharmacological property of physalins.
Antimalarial activity of physalins B, D, F, and G.[Pubmed:21954931]
J Nat Prod. 2011 Oct 28;74(10):2269-72.
The antimalarial activities of physalins B, D, F, and G (1-4), isolated from Physalis angulata, were investigated. In silico analysis using the similarity ensemble approach (SEA) database predicted the antimalarial activity of each of these compounds, which were shown using an in vitro assay against Plasmodium falciparum. However, treatment of P. berghei-infected mice with 3 increased parasitemia levels and mortality, whereas treatment with 2 was protective, causing a parasitemia reduction and a delay in mortality in P. berghei-infected mice. The exacerbation of in vivo infection by treatment with 3 is probably due to its potent immunosuppressive activity, which is not evident for 2.
In-vitro and in-vivo antitumour activity of physalins B and D from Physalis angulata.[Pubmed:16451752]
J Pharm Pharmacol. 2006 Feb;58(2):235-41.
We have evaluated the in-vitro and in-vivo antitumour activity of physalin B and Physalin D isolated from the aerial parts of Physalis angulata. In-vitro, both compounds displayed considerable cytotoxicity against several cancer cell lines, showing IC50 values in the range of 0.58 to 15.18 microg mL(-1) for physalin B, and 0.28 to 2.43 microg mL(-1) for Physalin D. The antitumour activity of both compounds was confirmed in-vivo using mice bearing sarcoma 180 tumour cells. The in-vivo antitumour activity was related to the inhibition of tumour proliferation, as observed by the reduction of Ki67 staining in tumours of treated animals. Histopathological examination of the kidney and liver showed that both organs were affected by physalin treatment, but in a reversible manner. These compounds were probably responsible for the previously described antitumour activity of ethanol extracts of P. angulata, and their identification and characterization presented here could explain the ethnopharmacological use of this species in the treatment of cancer.
Physalins B and F, seco-steroids isolated from Physalis angulata L., strongly inhibit proliferation, ultrastructure and infectivity of Trypanosoma cruzi.[Pubmed:24001147]
Parasitology. 2013 Dec;140(14):1811-21.
We previously observed that physalins have immunomodulatory properties, as well as antileishmanial and antiplasmodial activities. Here, we investigated the anti-Trypanosoma cruzi activity of physalins B, D, F and G. We found that physalins B and F were the most potent compounds against trypomastigote and epimastigote forms of T. cruzi. Electron microscopy of trypomastigotes incubated with physalin B showed disruption of kinetoplast, alterations in Golgi apparatus and endoplasmic reticulum, followed by the formation of myelin-like figures, which were stained with MDC to confirm their autophagic vacuole identity. Physalin B-mediated alteration in Golgi apparatus was likely due to T. cruzi protease perturbation; however physalins did not inhibit activity of the trypanosomal protease cruzain. Flow cytometry examination showed that cell death is mainly caused by necrosis. Treatment with physalins reduced the invasion process, as well as intracellular parasite development in macrophage cell culture, with a potency similar to benznidazole. We observed that a combination of physalins and benznidazole has a greater anti-T. cruzi activity than when compounds were used alone. These results indicate that physalins, specifically B and F, are potent and selective trypanocidal agents. They cause structural alterations and induce autophagy, which ultimately lead to parasite cell death by a necrotic process.
Antimycobacterial physalins from Physalis angulata L. (Solanaceae).[Pubmed:12203265]
Phytother Res. 2002 Aug;16(5):445-8.
Crude extracts and fractions from aerial parts of Physalis angulata have been bioassayed for antimycobacterial activity. Fraction A1-29-12 containing physalins B, F and D exhibited a minimum inhibitory concentration value (MIC) against Mycobacterium tuberculosis H(37)Rv strain of 32 microg/mL. Purified physalin B and Physalin D were also tested showing MIC values against Mycobacterium tuberculosis H(37)Rv strain of > 128 microg/mL and 32 microg/mL respectively, suggesting that Physalin D plays a relevant role in the antimycobacterial activity displayed. Structural elucidation of both physalins D and B was based on detailed (13)C and (1)H NMR spectral analysis with the aid of 2D-correlation spectroscopy ((1)H-(1)H, COSY, HSQC and HMBC). The assignment of the (13)C chemical shift for Physalin D is reported here for the first time.