Pseudohypericin

CAS# 55954-61-5

Pseudohypericin

Catalog No. BCN6348----Order now to get a substantial discount!

Product Name & Size Price Stock
Pseudohypericin: 5mg $190 In Stock
Pseudohypericin: 10mg Please Inquire In Stock
Pseudohypericin: 20mg Please Inquire Please Inquire
Pseudohypericin: 50mg Please Inquire Please Inquire
Pseudohypericin: 100mg Please Inquire Please Inquire
Pseudohypericin: 200mg Please Inquire Please Inquire
Pseudohypericin: 500mg Please Inquire Please Inquire
Pseudohypericin: 1000mg Please Inquire Please Inquire

Quality Control of Pseudohypericin

Number of papers citing our products

Chemical structure

Pseudohypericin

3D structure

Chemical Properties of Pseudohypericin

Cas No. 55954-61-5 SDF Download SDF
PubChem ID 4978 Appearance Black-violet powder
Formula C30H16O9 M.Wt 520.44
Type of Compound Anthraquinones Storage Desiccate at -20°C
Solubility Soluble in pyridine; slightly soluble in aqueous alkaline solution
Chemical Name 9,11,13,16,18,20-hexahydroxy-5-(hydroxymethyl)-24-methyloctacyclo[13.11.1.12,10.03,8.04,25.019,27.021,26.014,28]octacosa-1(26),2,4(25),5,8,10,12,14(28),15(27),16,18,20,23-tridecaene-7,22-dione
SMILES CC1=CC(=O)C2=C(C3=C(C=C(C4=C3C5=C6C7=C(C1=C25)C(=CC(=O)C7=C(C8=C(C=C(C4=C86)O)O)O)CO)O)O)O
Standard InChIKey NODGUBIGZKATOM-UHFFFAOYSA-N
Standard InChI InChI=1S/C30H16O9/c1-7-2-9(32)19-23-15(7)16-8(6-31)3-10(33)20-24(16)28-26-18(12(35)5-14(37)22(26)30(20)39)17-11(34)4-13(36)21(29(19)38)25(17)27(23)28/h2-5,31,34-39H,6H2,1H3
General tips For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months.
We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months.
Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it.
About Packaging 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial.
2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial.
3. Try to avoid loss or contamination during the experiment.
Shipping Condition Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request.

Source of Pseudohypericin

1 Hypericum sp.

Biological Activity of Pseudohypericin

DescriptionPseudohypericin has photocytotoxic, and antiretroviral activities, it has potential therapeutic value in diseases such as AIDS. Pseudohypericin can inhibit LPS-stimulated PGE2 and NO in mouse macrophages by potentiating suppressor of cytokine signaling 3 (SOCS3) expression, it has anti-tumor potential.
TargetsPGE | NO | SOCS3
In vitro

Photocytotoxic effect of pseudohypericin versus hypericin.[Reference: WebLink]

J.Photoch.Photobiol. B , 1998, 45(2-3):87-94.

Pseudohypericin and hypericin, the major photosensitizing constituents of Hypericum perforatum, are believed to cause hypericism.
METHODS AND RESULTS:
Since hypericin has been proposed as a photosensitizer for photodynamic cancer therapy, the photocytotoxicity of its congener Pseudohypericin has been investigated. The presence of foetal calf serum (FCS) or albumin extensively inhibits the photocytotoxic effect of Pseudohypericin against A431 tumour cells, and is associated with a large decrease in cellular uptake of the compound. These results suggest that Pseudohypericin, in contrast to hypericin, interacts strongly with constituents of FCS, lowering its interaction with cells.
CONCLUSIONS:
Since Pseudohypericin is two to three times more abundant in Hypericum than hypericin and the bioavailabilities of Pseudohypericin and hypericin after oral administration are similar, these results suggest that hypericin, and not Pseudohypericin, is likely to be the constituent responsible for hypericism. Moreover, the dramatic decrease of photosensitizing activity of Pseudohypericin in the presence of serum may restrict its applicability in clinical situations.

Studies of the mechanisms of action of the antiretroviral agents hypericin and pseudohypericin.[Reference: WebLink]

P. Natl. Acad. Sci., 1989, 86(15):5963-7.


METHODS AND RESULTS:
Administration of the aromatic polycyclic dione compounds hypericin or Pseudohypericin to experimental animals provides protection from disease induced by retroviruses that give rise to acute, as well as slowly progressive, diseases. For example, survival from Friend virus-induced leukemia is significantly prolonged by both compounds, with hypericin showing the greater potency. Viremia induced by LP-BM5 murine immunodeficiency virus is markedly suppressed after infrequent dosage of either substance. These compounds affect the retroviral infection and replication cycle at least at two different points: (i) Assembly or processing of intact virions from infected cells was shown to be affected by hypericin. Electron microscopy of hypericin-treated, virus-producing cells revealed the production of particles containing immature or abnormally assembled cores, suggesting the compounds may interfere with processing of gag-encoded precursor polyproteins. The released virions contain no detectable activity of reverse transcriptase. (ii) Hypericin and Pseudohypericin also directly inactivate mature and properly assembled retroviruses as determined by assays for reverse transcriptase and infectivity.
CONCLUSIONS:
Accumulating data from our laboratories suggest that these compounds inhibit retroviruses by unconventional mechanisms and that the potential therapeutic value of hypericin and Pseudohypericin should be explored in diseases such as AIDS.

Download citationShare Request full-text Pseudohypericin in Hypericum perforatum inhibited LPS-stimulated PGE2 and NO in mouse macrophages by potentiating SOCS3 expression[Reference: WebLink]

Cancer Prev. Res., 2010, 3(12 Supplement).

Hypericum perforatum, also known as ‘St John’s wort’, is one of the most studied medicinal plants. Despite its primary use as an anti-depression agent, certain compounds such as hypericin and hyperforin in H. perforatum extract have been shown to inhibit tumor growth by inducing apoptosis/necrosis and inhibiting angiogenesis. Using hypericin in photodynamic cancer therapy is also being studied. Our previous studies have demonstrated that H. perforatum extract and a group of 4 compounds in it, namely Pseudohypericin, amentoflavone, quercetin, and chlorogenic acid, decreased lipopolysaccharide (LPS)-stimulated macrophage inflammatory response, and identified the activation of suppressor of cytokine signaling 3 (SOCS3) as a candidate mechanism for this activity. Given that both inflammation and SOCS3 suppression are associated with tumor progression, we studied the role of SOCS3 activation in the anti-inflammatory activity of H. perforatum extract and its components.
METHODS AND RESULTS:
Specific siRNA was used to knockdown the expression of SOCS3 in RAW 264.7 mouse macrophages. Activation of SOCS3 in macrophages was measured at mRNA and protein levels using qRT-PCR and Western blot. H. perforatum extract at 30 μg/mL, the 4 compounds at the same concentrations as in the extract, and the combinations of individual compounds were applied to macrophages with and without SOCS3 knockdown to reveal whether their inhibition of LPS-stimulated prostaglandin E2 (PGE2) and nitric oxide (NO) was dependent on SOCS3. SOCS3 expression in the mouse macrophages was activated upon LPS stimulation and further potentiated by H. perforatum extract and the 4 compounds studied. SOCS3 siRNA transfection significantly compromised the activation of SOCS3. H. perforatum extract and the 4 compounds reduced LPS-stimulated PGE2 and NO production, but only the inhibitory effect of the 4 compounds was negated by SOCS3 knockdown. Combinations of two or three of the 4 compounds that include Pseudohypericin, the most essential component among the four that act synergistically in reducing macrophage inflammatory response, lost their inhibitory effect on PGE2 and NO production in SOCS3 knockdown cells.
CONCLUSIONS:
SOCS3 activation was critical for Pseudohypericin’s independent and interactive anti-inflammatory activity with amentoflavone, quercetin, and chlorogenic acid. H. perforatum extract utilized alternative mechanisms that are SOCS3 independent to inhibit macrophage inflammation. In addition to light-activated cytotoxicity and inhibition of angiogenesis, magnification of SOCS3 activation by H. perforatum extract might contribute to its anti-tumor potential.

Protocol of Pseudohypericin

Structure Identification
J Sep Sci. 2015 May 12. doi: 10.1002/jssc.201500260.

Combination of integrated expanded bed adsorption chromatography and countercurrent chromatography for the direct extraction and purification of pseudohypericin and hypericin from St. John's wort (Hypericum perforatum L.).[Pubmed: 25964189]

St. John's wort has attracted particular attention because of its beneficial effects such as antidepressant, antiviral, and anticancer agent.
METHODS AND RESULTS:
A method for the combination of integrated expanded bed adsorption chromatography and countercurrent chromatography for the simultaneous extraction and purification of Pseudohypericin and hypericin from the herb is presented in this paper. Firstly, the constituents were extracted and directly adsorbed by an expanded bed adsorption chromatography under optimal conditions. The stepwise elution was then employed on expanded bed adsorption chromatography which enriched the targets with higher purities and recoveries compared to other methods. Secondly, the eluent fractions from expanded bed adsorption chromatography were further separated by two-step high-speed countercurrent chromatography. A two-step high-speed countercurrent chromatography method with a biphasic solvent system composed of n-hexane/ethyl acetate/methanol/water with a volume ratio of 1:2:1:2 was performed by stepwise changing the flow rate of the mobile phase.
CONCLUSIONS:
Consequently, 5.6 mg of Pseudohypericin and 2.2 mg of hypericin with purities of 95.5 and 95.0%, respectively, were successfully obtained from 40 mg of crude sample. This article is protected by copyright. All rights reserved.

Pseudohypericin Dilution Calculator

Concentration (start)
x
Volume (start)
=
Concentration (final)
x
Volume (final)
 
 
 
C1
V1
C2
V2

calculate

Pseudohypericin Molarity Calculator

Mass
=
Concentration
x
Volume
x
MW*
 
 
 
g/mol

calculate

Preparing Stock Solutions of Pseudohypericin

1 mg 5 mg 10 mg 20 mg 25 mg
1 mM 1.9215 mL 9.6073 mL 19.2145 mL 38.429 mL 48.0363 mL
5 mM 0.3843 mL 1.9215 mL 3.8429 mL 7.6858 mL 9.6073 mL
10 mM 0.1921 mL 0.9607 mL 1.9215 mL 3.8429 mL 4.8036 mL
50 mM 0.0384 mL 0.1921 mL 0.3843 mL 0.7686 mL 0.9607 mL
100 mM 0.0192 mL 0.0961 mL 0.1921 mL 0.3843 mL 0.4804 mL
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations.

Organizitions Citing Our Products recently

 
 
 

Calcutta University

University of Minnesota

University of Maryland School of Medicine

University of Illinois at Chicago

The Ohio State University

University of Zurich

Harvard University

Colorado State University

Auburn University

Yale University

Worcester Polytechnic Institute

Washington State University

Stanford University

University of Leipzig

Universidade da Beira Interior

The Institute of Cancer Research

Heidelberg University

University of Amsterdam

University of Auckland
TsingHua University
TsingHua University
The University of Michigan
The University of Michigan
Miami University
Miami University
DRURY University
DRURY University
Jilin University
Jilin University
Fudan University
Fudan University
Wuhan University
Wuhan University
Sun Yat-sen University
Sun Yat-sen University
Universite de Paris
Universite de Paris
Deemed University
Deemed University
Auckland University
Auckland University
The University of Tokyo
The University of Tokyo
Korea University
Korea University
Featured Products
New Products
 

References on Pseudohypericin

Combination of integrated expanded bed adsorption chromatography and countercurrent chromatography for the direct extraction and purification of pseudohypericin and hypericin from St. John's wort (Hypericum perforatum L.).[Pubmed:25964189]

J Sep Sci. 2015 Aug;38(15):2588-96.

St. John's wort has attracted particular attention because of its beneficial effects as an antidepressant, antiviral, and anticancer agent. A method for the combination of integrated expanded bed adsorption chromatography and countercurrent chromatography for the simultaneous extraction and purification of Pseudohypericin and hypericin from the herb is presented in this paper. Firstly, the constituents were extracted and directly adsorbed by expanded bed adsorption chromatography under optimal conditions. The stepwise elution was then performed by expanded bed adsorption chromatography that enriched the targets with higher purities and recoveries compared to other methods. Secondly, the eluent fractions from expanded bed adsorption chromatography were further separated by two-step high-speed countercurrent chromatography. A two-step high-speed countercurrent chromatography method with a biphasic solvent system composed of n-hexane/ethyl acetate/methanol/water with a volume ratio of 1:2:1:2 was performed by stepwise changing the flow rate of the mobile phase. Consequently, 5.6 mg of Pseudohypericin and 2.2 mg of hypericin with purities of 95.5 and 95.0%, respectively, were successfully obtained from 40 mg of crude sample.

Description

Pseudohypericin and its congener Hypericin are the major hydroxylated phenanthroperylenediones present in Hypericum species. Pseudohypericin shows anti-HIV activity.

Keywords:

Pseudohypericin,55954-61-5,Natural Products, buy Pseudohypericin , Pseudohypericin supplier , purchase Pseudohypericin , Pseudohypericin cost , Pseudohypericin manufacturer , order Pseudohypericin , high purity Pseudohypericin

Online Inquiry for:

      Fill out the information below

      • Size:Qty: - +

      * Required Fields

                                      Result: