SKF 86002 dihydrochlorideCAS# 116339-68-5 |
- SB202190 (FHPI)
Catalog No.:BCC1093
CAS No.:152121-30-7
- SB 239063
Catalog No.:BCC1923
CAS No.:193551-21-2
- SD-06
Catalog No.:BCC1937
CAS No.:271576-80-8
- BIRB 796 (Doramapimod)
Catalog No.:BCC2535
CAS No.:285983-48-4
- LY2228820
Catalog No.:BCC2528
CAS No.:862507-23-1
Quality Control & MSDS
Number of papers citing our products
Chemical structure
3D structure
Cas No. | 116339-68-5 | SDF | Download SDF |
PubChem ID | 10339107 | Appearance | Powder |
Formula | C16H14Cl2FN3S | M.Wt | 370.27 |
Type of Compound | N/A | Storage | Desiccate at -20°C |
Solubility | Soluble to 50 mM in water | ||
Chemical Name | 6-(4-fluorophenyl)-5-pyridin-4-yl-2,3-dihydroimidazo[2,1-b][1,3]thiazole;dihydrochloride | ||
SMILES | C1CSC2=NC(=C(N21)C3=CC=NC=C3)C4=CC=C(C=C4)F.Cl.Cl | ||
Standard InChIKey | GQQCNUNCYVXBTF-UHFFFAOYSA-N | ||
Standard InChI | InChI=1S/C16H12FN3S.2ClH/c17-13-3-1-11(2-4-13)14-15(12-5-7-18-8-6-12)20-9-10-21-16(20)19-14;;/h1-8H,9-10H2;2*1H | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
Description | Inhibitor of p38 MAP kinase (IC50 = 0.1 - 1 μM). Potently inhibits LPS-induced IL-1 and TNF-α production in human monocytes (IC50 = 1 μM). Also inhibits 5-lipoxygenase- and cyclooxygenase-mediated arachidonic acid metabolism in RBL-1 cells (IC50 values are 10 and 100 μM respectively). Anti-inflammatory following oral administration in vivo. |
SKF 86002 dihydrochloride Dilution Calculator
SKF 86002 dihydrochloride Molarity Calculator
1 mg | 5 mg | 10 mg | 20 mg | 25 mg | |
1 mM | 2.7007 mL | 13.5037 mL | 27.0073 mL | 54.0146 mL | 67.5183 mL |
5 mM | 0.5401 mL | 2.7007 mL | 5.4015 mL | 10.8029 mL | 13.5037 mL |
10 mM | 0.2701 mL | 1.3504 mL | 2.7007 mL | 5.4015 mL | 6.7518 mL |
50 mM | 0.054 mL | 0.2701 mL | 0.5401 mL | 1.0803 mL | 1.3504 mL |
100 mM | 0.027 mL | 0.135 mL | 0.2701 mL | 0.5401 mL | 0.6752 mL |
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations. |
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
- Sarafotoxin S6b
Catalog No.:BCC5720
CAS No.:116303-65-2
- Clemizole hydrochloride
Catalog No.:BCC1486
CAS No.:1163-36-6
- 6-Aldehydoisoophiopogonanone A
Catalog No.:BCN2860
CAS No.:116291-82-8
- Pyrroside B
Catalog No.:BCN4042
CAS No.:116271-35-3
- MCB-613
Catalog No.:BCC3982
CAS No.:1162656-22-5
- Levobetaxolol HCl
Catalog No.:BCC4671
CAS No.:116209-55-3
- Aflatoxin B1
Catalog No.:BCC9212
CAS No.:1162-65-8
- Complanatoside
Catalog No.:BCN8213
CAS No.:116183-66-5
- Alexine
Catalog No.:BCN2054
CAS No.:116174-63-1
- Brevicolline
Catalog No.:BCN2459
CAS No.:20069-02-7
- VU 0361737
Catalog No.:BCC4596
CAS No.:1161205-04-4
- G-15
Catalog No.:BCC6058
CAS No.:1161002-05-6
- Fumonisin B1
Catalog No.:BCC2461
CAS No.:116355-83-0
- Acetylexidonin
Catalog No.:BCN3279
CAS No.:116368-90-2
- 2alpha-hydroxy-3beta-acetyloxy-betulic acid
Catalog No.:BCN3072
CAS No.:1163728-89-9
- Loureirin C
Catalog No.:BCN3761
CAS No.:116384-24-8
- 3',4',7-Trimethoxyflavan
Catalog No.:BCN6042
CAS No.:116384-26-0
- Z-Tyr-OH
Catalog No.:BCC2747
CAS No.:1164-16-5
- Androstanolone acetate
Catalog No.:BCC8826
CAS No.:1164-91-6
- SR 3576
Catalog No.:BCC7999
CAS No.:1164153-22-3
- 9S-10alpha-Hydroxyepigambogic acid
Catalog No.:BCN3080
CAS No.:1164201-85-7
- Fargesone A
Catalog No.:BCN6417
CAS No.:116424-69-2
- Fargesone B
Catalog No.:BCN6415
CAS No.:116424-70-5
- Aerugidiol
Catalog No.:BCN3529
CAS No.:116425-35-5
Common and distinct intracellular signaling pathways in human neutrophils utilized by platelet activating factor and FMLP.[Pubmed:9062356]
J Clin Invest. 1997 Mar 1;99(5):975-86.
Stimulation of human neutrophils with chemoattractants FMLP or platelet activating factor (PAF) results in different but overlapping functional responses. We questioned whether these differences might reflect patterns of intracellular signal transduction. Stimulation with either PAF or FMLP resulted in equivalent phosphorylation and activation of the mitogen-activated protein kinase (MAPk) homologue 38-kD murine MAP kinase homologous to HOG-1 (p38) MAPk. Neither FMLP nor PAF activated c-jun NH2-terminal MAPk (JNKs). Under identical conditions, FMLP but not PAF, resulted in significant p42/44 (ERK) MAPk activation. Both FMLP and PAF activated MAP kinase kinase-3 (MKK3), a known activator of p38 MAPk. Both MAP ERK kinase kinase-1 (MEKK1) and Raf are activated strongly by FMLP, but minimally by PAF. Pertussis toxin blocked FMLP-induced activation of the p42/44 (ERK) MAPk cascade, but not that of p38 MAPk. A specific p38 MAPk inhibitor (SK&F 86002) blocked superoxide anion production in response to FMLP and reduced adhesion and chemotaxis in response to PAF or FMLP. These results demonstrate distinct patterns of intracellular signaling for two chemoattractants and suggest that selective activation of intracellular signaling cascades may underlie different patterns of functional responses.
A protein kinase involved in the regulation of inflammatory cytokine biosynthesis.[Pubmed:7997261]
Nature. 1994 Dec 22-29;372(6508):739-46.
Production of interleukin-1 and tumour necrosis factor from stimulated human monocytes is inhibited by a new series of pyridinyl-imidazole compounds. Using radiolabelled and radio-photoaffinity-labelled chemical probes, the target of these compounds was identified as a pair of closely related mitogen-activated protein kinase homologues, termed CSBPs. Binding of the pyridinyl-imidazole compounds inhibited CSBP kinase activity and could be directly correlated with their ability to inhibit cytokine production, suggesting that the CSBPs are critical for cytokine production.
SK&F 86002: a structurally novel anti-inflammatory agent that inhibits lipoxygenase- and cyclooxygenase-mediated metabolism of arachidonic acid.[Pubmed:2823821]
Biochem Pharmacol. 1987 Oct 15;36(20):3463-70.
The effects of SK&F 86002 [5-(4-pyridyl)-6 (4-fluorophenyl)-2,3-dihydroimidazo (2,1-b) thiazole] on the generation of eicosanoids in vitro and on inflammatory responses in vivo are described and compared to other non-steroidal anti-inflammatory drugs. SK&F 86002 inhibited prostaglandin H2 (PGH2) synthase activity (IC50 120 microM) as well as prostanoid production by rat basophilic leukemia (RBL-1) cells (IC50 70 microM) and its sonicate (IC50 100 microM) and human monocytes (IC50 1 microM). In addition, SK&F 86002 inhibited the generation of dihydroxyeicosatetraenoic acid (diHETE) and 5-hydroxyeicosatetraenoic acid (5-HETE) by a high speed supernatant fraction of RBL-1 cells (IC50 10 microM). Cellular production of 5-lipoxygenase products was inhibited by SK&F 86002 as measured by leukotriene B4 (LTB4) generation from human neutrophils (IC50 20 microM), leukotriene C4 (LTC4) generation by human monocytes (IC50 20 microM), and 5-HETE production by RBL-1 cells (IC50 40 microM). The in vivo profile of anti-inflammatory activity of SK&F 86002 supports the dual inhibition of arachidonate metabolism as indicated by its activity in inflammation models that are insensitive to selective cyclooxygenase inhibitors. The responses of arachidonic-acid-induced edema in the mouse ear and rat paw, as well as the cell infiltration induced by carrageenan in the mouse peritoneum and by arachidonic acid in the rat air pouch, were inhibited by SK&F 86002 and phenidone but not by the selective cyclooxygenase inhibitors naproxen and indomethacin.