ω-Agatoxin IVA

Ca2+ channel blocker (P-type) CAS# 145017-83-0

ω-Agatoxin IVA

Catalog No. BCC7488----Order now to get a substantial discount!

Product Name & Size Price Stock
ω-Agatoxin IVA: 5mg $117300 In Stock
ω-Agatoxin IVA: 10mg Please Inquire In Stock
ω-Agatoxin IVA: 20mg Please Inquire Please Inquire
ω-Agatoxin IVA: 50mg Please Inquire Please Inquire
ω-Agatoxin IVA: 100mg Please Inquire Please Inquire
ω-Agatoxin IVA: 200mg Please Inquire Please Inquire
ω-Agatoxin IVA: 500mg Please Inquire Please Inquire
ω-Agatoxin IVA: 1000mg Please Inquire Please Inquire
Related Products

Quality Control of ω-Agatoxin IVA

Number of papers citing our products

Chemical structure

ω-Agatoxin IVA

3D structure

Chemical Properties of ω-Agatoxin IVA

Cas No. 145017-83-0 SDF Download SDF
PubChem ID 90488780 Appearance Powder
Formula C217H360N68O60S10 M.Wt 5202.25
Type of Compound N/A Storage Desiccate at -20°C
Synonyms ω-Aga-IV A
Solubility Soluble in sterile water
Sequence KKKCIAKDYGRCKWGGTPCCRGRGCICSIMGTNCECKPRLIMEGLGLA

(Modifications: Disulfide bridge between 4 - 20, 12 - 25, 19 - 36, 27 - 34)

Chemical Name 4-[[2-[[2-[[2-[[2-[[1-[6-amino-2-[[87-[[6-amino-2-[[6-amino-2-(2,6-diaminohexanoylamino)hexanoyl]amino]hexanoyl]amino]-60,78-bis(4-aminobutyl)-25-(2-amino-2-oxoethyl)-4,13,84-tri(butan-2-yl)-1a,66,95-tris(3-carbamimidamidopropyl)-31-(2-carboxyethyl)-75-(carboxymethyl)-22,48-bis(1-hydroxyethyl)-10-(hydroxymethyl)-72-[(4-hydroxyphenyl)methyl]-57-(1H-indol-3-ylmethyl)-81-methyl-16-(2-methylsulfanylethyl)-2,2a,5,5a,8,11,12a,14,17,20,23,26,29,32,41,47,50,53,56,59,62,65,68,71,74,77,80,83,86,93,96,99-dotriacontaoxo-8a,9a,14a,15a,36,37,89,90-octathia-a,3,3a,6,6a,9,11a,12,15,18,21,24,27,30,33,40,46,49,52,55,58,61,64,67,70,73,76,79,82,85,94,97-dotriacontazapentacyclo[61.43.4.47,28.239,92.042,46]hexadecahectane-34-carbonyl]amino]hexanoyl]pyrrolidine-2-carbonyl]amino]-5-carbamimidamidopentanoyl]amino]-4-methylpentanoyl]amino]-3-methylpentanoyl]amino]-4-methylsulfanylbutanoyl]amino]-5-[[2-[[1-[[2-[[1-(1-carboxyethylamino)-4-methyl-1-oxopentan-2-yl]amino]-2-oxoethyl]amino]-4-methyl-1-oxopentan-2-yl]amino]-2-oxoethyl]amino]-5-oxopentanoic acid
SMILES CCC(C)C1C(=O)NC2CSSCC(C(=O)NC(C(=O)NC(CSSCC3C(=O)NC4CSSCC(C(=O)NC(C(=O)NC(C(=O)NC(C(=O)NC(C(=O)NC(C(=O)NCC(=O)NC(C(=O)NC(CSSCC(C(=O)N1)NC(=O)CNC(=O)C(NC(=O)CNC(=O)C(NC4=O)CCCNC(=N)N)CCCNC(=N)N)C(=O)NC(C(=O)NC(C(=O)NCC(=O)NCC(=O)NC(C(=O)N5CCCC5C(=O)N3)C(C)O)CC6=CNC7=CC=CC=C76)CCCCN)CCCNC(=N)N)CC8=CC=C(C=C8)O)CC(=O)O)CCCCN)C)C(C)CC)NC(=O)C(CCCCN)NC(=O)C(CCCCN)NC(=O)C(CCCCN)N)C(=O)NC(CCCCN)C(=O)N9CCCC9C(=O)NC(CCCNC(=N)N)C(=O)NC(CC(C)C)C(=O)NC(C(C)CC)C(=O)NC(CCSC)C(=O)NC(CCC(=O)O)C(=O)NCC(=O)NC(CC(C)C)C(=O)NCC(=O)NC(CC(C)C)C(=O)NC(C)C(=O)O)CCC(=O)O)NC(=O)C(NC(=O)C(NC(=O)CNC(=O)C(NC(=O)C(NC(=O)C(NC2=O)CO)C(C)CC)CCSC)C(C)O)CC(=O)N
Standard InChIKey NVVFOMZVLALQKT-UHFFFAOYSA-N
Standard InChI InChI=1S/C217H360N68O60S10/c1-21-111(11)168-206(337)247-115(15)174(305)254-128(48-28-34-70-219)185(316)268-144(89-167(303)304)193(324)266-141(86-119-59-61-121(289)62-60-119)181(312)246-94-159(293)250-127(55-41-77-236-216(230)231)183(314)271-147-101-349-348-100-146-202(333)283-171(114(14)24-4)209(340)277-152-106-354-350-102-148(274-192(323)143(88-156(225)290)269-210(341)172(117(17)287)278-164(298)98-244-179(310)135(67-81-346-19)262-207(338)170(113(13)23-3)281-195(326)145(99-286)270-200(152)331)198(329)260-134(64-66-166(301)302)189(320)272-150(199(330)264-137(52-32-38-74-223)211(342)284-79-43-57-154(284)204(335)261-132(56-42-78-237-217(232)233)187(318)265-140(85-110(9)10)194(325)280-169(112(12)22-2)208(339)263-136(68-82-347-20)190(321)259-133(63-65-165(299)300)178(309)243-95-160(294)251-138(83-108(5)6)180(311)245-96-161(295)252-139(84-109(7)8)191(322)248-116(16)213(344)345)104-352-353-105-151(276-205(336)155-58-44-80-285(155)212(343)173(118(18)288)279-163(297)92-239-157(291)91-240-182(313)142(87-120-90-238-124-47-26-25-45-122(120)124)267-186(317)130(258-197(147)328)50-30-36-72-221)201(332)275-149(196(327)256-126(54-40-76-235-215(228)229)177(308)242-93-158(292)249-125(53-39-75-234-214(226)227)176(307)241-97-162(296)253-146)103-351-355-107-153(203(334)282-168)273-188(319)131(51-31-37-73-222)257-184(315)129(49-29-35-71-220)255-175(306)123(224)46-27-33-69-218/h25-26,45,47,59-62,90,108-118,123,125-155,168-173,238,286-289H,21-24,27-44,46,48-58,63-89,91-107,218-224H2,1-20H3,(H2,225,290)(H,239,291)(H,240,313)(H,241,307)(H,242,308)(H,243,309)(H,244,310)(H,245,311)(H,246,312)(H,247,337)(H,248,322)(H,249,292)(H,250,293)(H,251,294)(H,252,295)(H,253,296)(H,254,305)(H,255,306)(H,256,327)(H,257,315)(H,258,328)(H,259,321)(H,260,329)(H,261,335)(H,262,338)(H,263,339)(H,264,330)(H,265,318)(H,266,324)(H,267,317)(H,268,316)(H,269,341)(H,270,331)(H,271,314)(H,272,320)(H,273,319)(H,274,323)(H,275,332)(H,276,336)(H,277,340)(H,278,298)(H,279,297)(H,280,325)(H,281,326)(H,282,334)(H,283,333)(H,299,300)(H,301,302)(H,303,304)(H,344,345)(H4,226,227,234)(H4,228,229,235)(H4,230,231,236)(H4,232,233,237)
General tips For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months.
We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months.
Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it.
About Packaging 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial.
2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial.
3. Try to avoid loss or contamination during the experiment.
Shipping Condition Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request.

Biological Activity of ω-Agatoxin IVA

DescriptionSelective blocker of P-type calcium channels (IC50 < 1 - 3 nM). Also inhibits N-type channels at micromolar concentrations.

ω-Agatoxin IVA Dilution Calculator

Concentration (start)
x
Volume (start)
=
Concentration (final)
x
Volume (final)
 
 
 
C1
V1
C2
V2

calculate

ω-Agatoxin IVA Molarity Calculator

Mass
=
Concentration
x
Volume
x
MW*
 
 
 
g/mol

calculate

Organizitions Citing Our Products recently

 
 
 

Calcutta University

University of Minnesota

University of Maryland School of Medicine

University of Illinois at Chicago

The Ohio State University

University of Zurich

Harvard University

Colorado State University

Auburn University

Yale University

Worcester Polytechnic Institute

Washington State University

Stanford University

University of Leipzig

Universidade da Beira Interior

The Institute of Cancer Research

Heidelberg University

University of Amsterdam

University of Auckland
TsingHua University
TsingHua University
The University of Michigan
The University of Michigan
Miami University
Miami University
DRURY University
DRURY University
Jilin University
Jilin University
Fudan University
Fudan University
Wuhan University
Wuhan University
Sun Yat-sen University
Sun Yat-sen University
Universite de Paris
Universite de Paris
Deemed University
Deemed University
Auckland University
Auckland University
The University of Tokyo
The University of Tokyo
Korea University
Korea University
Featured Products
New Products
 

References on ω-Agatoxin IVA

Structure-activity relationships of omega-Agatoxin IVA in lipid membranes.[Pubmed:27838299]

Biochem Biophys Res Commun. 2017 Jan 1;482(1):170-175.

To analyze structural features of omega-Aga IVA, a gating modifier toxin from spider venom, we here investigated the NMR solution structure of omega-Aga IVA within DPC micelles. Under those conditions, the Cys-rich central region of omega-Aga IVA still retains the inhibitor Cys knot motif with three short antiparallel beta-strands seen in water. However, (15)N HSQC spectra of omega-Aga IVA within micelles revealed that there are radical changes to the toxin's C-terminal tail and several loops upon binding to micelles. The C-terminal tail of omega-Aga IVA appears to assume a beta-turn like conformation within micelles, though it is disordered in water. Whole-cell patch clamp studies with several omega-Aga IVA analogs indicate that both the hydrophobic C-terminal tail and an Arg patch in the core region of omega-Aga IVA are critical for Cav2.1 blockade. These results suggest that the membrane environment stabilizes the structure of the toxin, enabling it to act in a manner similar to other gating modifier toxins, though its mode of interaction with the membrane and the channel is unique.

Differential responses to omega-agatoxin IVA in murine frontal cortex and spinal cord derived neuronal networks.[Pubmed:23523780]

Neurotoxicology. 2013 Jul;37:19-25.

omega-Agatoxin-IVA is a well known P/Q-type Ca(2+) channel blocker and has been shown to affect presynaptic Ca(2+) currents as well postsynaptic potentials. P/Q-type voltage gated Ca(2+) channels play a vital role in presynaptic neurotransmitter release and thus play a role in action potential generation. Monitoring spontaneous activity of neuronal networks on microelectrode arrays (MEAs) provides an important tool for examining this neurotoxin. Changes in extracellular action potentials are readily observed and are dependent on synaptic function. Given the efficacy of murine frontal cortex and spinal cord networks to detect neuroactive substances, we investigated the effects of omega-agatoxin on spontaneous action potential firing within these networks. We found that networks derived from spinal cord are more sensitive to the toxin than those from frontal cortex; a concentration of only 10nM produced statistically significant effects on activity from spinal cord networks whereas 50 nM was required to alter activity in frontal cortex networks. Furthermore, the effects of the toxin on frontal cortex are more complex as unit specific responses were observed. These manifested as either a decrease or increase in action potential firing rate which could be statistically separated as unique clusters. Administration of bicuculline, a GABAA inhibitor, isolated a single response to omega-agatoxin, which was characterized by a reduction in network activity. These data support the notion that the two clusters detected with omega-agatoxin exposure represent differential responses from excitatory and inhibitory neuronal populations.

Protease treatment of cerebellar purkinje cells renders omega-agatoxin IVA-sensitive Ca2+ channels insensitive to inhibition by omega-conotoxin GVIA.[Pubmed:17975010]

J Pharmacol Exp Ther. 2008 Feb;324(2):806-14.

The identification of currents carried by N- and P-type Ca(2+) channels in the nervous system relies on the use of omega-conotoxin (CTx) GVIA and omega-agatoxin (Aga) IVA. The peptide omega-Aga-IVA inhibits P-type currents at nanomolar concentrations and N-type currents at micromolar concentrations. omega-CTx-GVIA blocks N-type currents, but there have been no reports that it can also inhibit P-type currents. To assess the effects of omega-CTx-GVIA on P-type channels, we made patch-clamp recordings from the soma of Purkinje cells in cerebellar slices of mature [postnatal days (P) 40-50, P40-50] and immature (P13-20) rats, in which P-type channels carry most of the Ca(2+) channel current (>/=85%). These showed that micromolar concentrations of omega-CTx-GVIA inhibited the current in P40-50 cells (66%, 3 microM; 78%, 10 microM) and in P13-20 Purkinje cells (86%, 3 muM; 89%, 10 microM). The inhibition appeared to be reversible, in contrast to the known irreversible inhibition of N-type current. Exposure of slices from young animals to the enzyme commonly used to dissociate Purkinje cells, protease XXIII, abolished the inhibition by omega-CTx-GVIA but not by omega-Aga-IVA (84%, 30 nM). Our finding that micromolar concentrations of omega-CTx-GVIA inhibit P-type currents suggests that specific block of N-type current requires the use of submicromolar concentrations. The protease-induced removal of block by omega-CTx-GVIA but not by omega-Aga-IVA indicates a selective proteolytic action at site(s) on P-type channels with which omega-CTx-GVIA interacts. It also suggests that Ca(2+) channel pharmacology in neurons dissociated using protease may not predict that in neurons not exposed to the enzyme.

Maturation of rat cerebellar Purkinje cells reveals an atypical Ca2+ channel current that is inhibited by omega-agatoxin IVA and the dihydropyridine (-)-(S)-Bay K8644.[Pubmed:17124267]

J Physiol. 2007 Feb 1;578(Pt 3):693-714.

To determine if the properties of Ca2+ channels in cerebellar Purkinje cells change during postnatal development, we recorded Ca2+ channel currents from Purkinje cells in cerebellar slices of mature (postnatal days (P) 40-50) and immature (P13-20) rats. We found that at P40-50, the somatic Ca2+ channel current was inhibited by omega-agatoxin IVA at concentrations selective for P-type Ca2+ channels (approximately 85%; IC50, <1 nM) and by the dihydropyridine (-)-(S)-Bay K8644 (approximately 70%; IC50, approximately 40 nM). (-)-(S)-Bay K8644 is known to activate L-type Ca2+ channels, but the decrease in current was not secondary to the activation of L-type channels because inhibition by (-)-(S)-Bay K8644 persisted in the presence of the L-type channel blocker (R,S)-nimodipine. By contrast, at P13-20, the current was inhibited by omega-agatoxin IVA (approximately 86%; IC50, approximately 1 nM) and a minor component was inhibited by (R,S)-nimodipine (approximately 8%). The dihydropyridine (-)-(S)-Bay K8644 had no clear effect when applied alone, but in the presence of (R,S)-nimodipine it reduced the current (approximately 40%), suggesting that activation of L-type channels by (-)-(S)-Bay K8644 masks its inhibition of non-L-type channels. Our findings indicate that Purkinje neurons express a previously unrecognized type of Ca2+ channel that is inhibited by omega-agatoxin IVA, like prototypical P-type channels, and by (-)-(S)-Bay K8644, unlike classical P-type or L-type channels. During maturation, there is a decrease in the size of the L-type current and an increase in the size of the atypical Ca2+ channel current. These changes may contribute to the maturation of the electrical properties of Purkinje cells.

Splicing of alpha 1A subunit gene generates phenotypic variants of P- and Q-type calcium channels.[Pubmed:10321243]

Nat Neurosci. 1999 May;2(5):407-15.

P-type and Q-type calcium channels mediate neurotransmitter release at many synapses in the mammalian nervous system. The alpha 1A calcium channel has been implicated in the etiologies of conditions such as episodic ataxia, epilepsy and familial migraine, and shares several properties with native P- and Q-type channels. However, the exact relationship between alpha 1A and P- and Q-type channels is unknown. Here we report that alternative splicing of the alpha 1A subunit gene results in channels with distinct kinetic, pharmacological and modulatory properties. Overall, the results indicate that alternative splicing of the alpha 1A gene generates P-type and Q-type channels as well as multiple phenotypic variants.

P-type calcium channels blocked by the spider toxin omega-Aga-IVA.[Pubmed:1311418]

Nature. 1992 Feb 27;355(6363):827-9.

Voltage-dependent calcium channels mediate calcium entry into neurons, which is crucial for many processes in the brain including synaptic transmission, dendritic spiking, gene expression and cell death. Many types of calcium channels exist in mammalian brains, but high-affinity blockers are available for only two types, L-type channels (targeted by nimodipine and other dihydropyridine channel blockers) and N-type channels (targeted by omega-conotoxin). In a search for new channel blockers, we have identified a peptide toxin from funnel web spider venom, omega-Aga-IVA, which is a potent inhibitor of both calcium entry into rat brain synaptosomes and of 'P-type' calcium channels in rat Purkinje neurons. omega-Aga-IVA will facilitate characterization of brain calcium channels resistant to existing channel blockers and may assist in the design of neuroprotective drugs.

Calcium channels coupled to glutamate release identified by omega-Aga-IVA.[Pubmed:1357749]

Science. 1992 Oct 9;258(5080):310-3.

Presynaptic calcium channels are crucial elements of neuronal excitation-secretion coupling. In mammalian brain, they have been difficult to characterize because most presynaptic terminals are too small to probe with electrodes, and available pharmacological tools such as dihydropyridines and omega-conotoxin are largely ineffective. Subsecond measurements of synaptosomal glutamate release have now been used to assess presynaptic calcium channel activity in order to study the action of peptide toxins from the venom of the funnel web spider Agelenopsis aperta, which is known to inhibit dihydropyridine and omega-conotoxin-resistant neuronal calcium currents. A presynaptic calcium channel important in glutamate release is shown to be omega-Aga-IVA sensitive and omega-conotoxin resistant.

Keywords:

ω-Agatoxin IVA,145017-83-0,ω-Aga-IV A,Natural Products,Calcium Channel, buy ω-Agatoxin IVA , ω-Agatoxin IVA supplier , purchase ω-Agatoxin IVA , ω-Agatoxin IVA cost , ω-Agatoxin IVA manufacturer , order ω-Agatoxin IVA , high purity ω-Agatoxin IVA

Online Inquiry for:

      Fill out the information below

      • Size:Qty: - +

      * Required Fields

                                      Result: