2-hydroxyl emodin-1-methyl etherCAS# 346434-45-5 |
2D Structure
Quality Control & MSDS
3D structure
Package In Stock
Number of papers citing our products
Cas No. | 346434-45-5 | SDF | Download SDF |
PubChem ID | 10086148.0 | Appearance | Powder |
Formula | C16H12O6 | M.Wt | 300.26 |
Type of Compound | N/A | Storage | Desiccate at -20°C |
Solubility | Soluble in Chloroform,Dichloromethane,Ethyl Acetate,DMSO,Acetone,etc. | ||
Chemical Name | 2,6,8-trihydroxy-1-methoxy-3-methylanthracene-9,10-dione | ||
SMILES | CC1=CC2=C(C(=C1O)OC)C(=O)C3=C(C2=O)C=C(C=C3O)O | ||
Standard InChIKey | JGWNHIDADWFGIJ-UHFFFAOYSA-N | ||
Standard InChI | InChI=1S/C16H12O6/c1-6-3-8-12(16(22-2)13(6)19)15(21)11-9(14(8)20)4-7(17)5-10(11)18/h3-5,17-19H,1-2H3 | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
2-hydroxyl emodin-1-methyl ether Dilution Calculator
2-hydroxyl emodin-1-methyl ether Molarity Calculator
1 mg | 5 mg | 10 mg | 20 mg | 25 mg | |
1 mM | 3.3304 mL | 16.6522 mL | 33.3045 mL | 66.6089 mL | 83.2612 mL |
5 mM | 0.6661 mL | 3.3304 mL | 6.6609 mL | 13.3218 mL | 16.6522 mL |
10 mM | 0.333 mL | 1.6652 mL | 3.3304 mL | 6.6609 mL | 8.3261 mL |
50 mM | 0.0666 mL | 0.333 mL | 0.6661 mL | 1.3322 mL | 1.6652 mL |
100 mM | 0.0333 mL | 0.1665 mL | 0.333 mL | 0.6661 mL | 0.8326 mL |
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations. |
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
- Maceneolignan H
Catalog No.:BCX0682
CAS No.:1314042-85-7
- 1-Methyl Emodin
Catalog No.:BCX0681
CAS No.:3775-08-4
- Polyporusterone B
Catalog No.:BCX0680
CAS No.:141360-89-6
- Emodin anthrone
Catalog No.:BCX0679
CAS No.:491-60-1
- Anhydrosafflor yellow B
Catalog No.:BCX0678
CAS No.:184840-84-4
- Cis-Emodin bianthrone
Catalog No.:BCX0677
CAS No.:61281-19-4
- Polyporusterone A
Catalog No.:BCX0676
CAS No.:141360-88-5
- Dendronobilin B
Catalog No.:BCX0675
CAS No.:1002717-96-5
- 5,7-Dihydroxycoumarin
Catalog No.:BCX0674
CAS No.:2732-18-5
- Urolithin A
Catalog No.:BCX0673
CAS No.:1143-70-0
- Sorbitol
Catalog No.:BCX0672
CAS No.:50-70-4
- Ergolide
Catalog No.:BCX0671
CAS No.:54999-07-4
- Quinquenoside R1
Catalog No.:BCX0684
CAS No.:85013-02-1
- Sequoyitol
Catalog No.:BCX0685
CAS No.:523-92-2
- Cassiaside C2
Catalog No.:BCX0686
CAS No.:1958039-40-1
- 3-Hydroxy-1,2-dimethoxy-anthraquinone
Catalog No.:BCX0687
CAS No.:10383-62-7
- Gentianose
Catalog No.:BCX0688
CAS No.:25954-44-3
- Koumidine
Catalog No.:BCX0689
CAS No.:1358-75-4
- Farnesene
Catalog No.:BCX0690
CAS No.:502-61-4
- 8,9-epoxy-3,10-diisobutyryloxythymol
Catalog No.:BCX0691
CAS No.:22518-06-5
- N-(3-methoxybenzyl)-octadecanamide
Catalog No.:BCX0692
CAS No.:1429659-99-3
- N-benzyl-heptadecanamide
Catalog No.:BCX0693
CAS No.:883715-19-3
- Polygalasaponin XXVIII
Catalog No.:BCX0694
CAS No.:176182-01-7
- Cavidine
Catalog No.:BCX0695
CAS No.:32728-75-9
Synergistic and attenuated effects and molecular biological mechanisms of Shouhui Tongbian capsule in the treatment of slow transit constipation based on UPLC-MS/MS, network pharmacology and animal experimental validation.[Pubmed:38039873]
J Pharm Biomed Anal. 2024 Feb 15;239:115846.
BACKGROUND: Shouhui Tongbian capsule (SHTB) has been widely used for the treatment of constipation. There are few studies on SHTB at present. The current study aimed to explore the effects of multi-components compatibility of SHTB for efficacy enhancement and toxicity reduction and evaluate its molecular biological mechanisms in the treatment of slow transit constipation (STC). METHODS: Ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was used to quantify 17 anthraquinone components in different compatible systems of SHTB. Network pharmacological analysis was used to probe the potential mechanisms of SHTB in treating STC. In addition, an animal experiment combined with western blot analysis was performed to further validate the predicted results. RESULTS: After compatibility, the dissolution of 13 components with good effects in treating constipation increased, while the dissolution of 3 components with hepatotoxicity decreased. Overall, 145 common targets of 13 synergistic components and constipation were identified. A synergistic component-target-disease network showed that chrysoobtusin, obtusifolin, emodin, obtusin and 2-hydroxyl emodin-1-methyl ether were the potential key synergistic components. A protein-protein interaction network analysis identified 91 targets, and an analysis of topological characteristics was conducted to confirm the core targets. Gene Ontology function revealed that the 13 synergistic components for the treatment of STC mainly played roles via protein phosphorylation, positive regulation of phosphorylation, phosphotransferase activity, kinase activity and protein kinase activity, and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis showed that these components were enriched in pathways in cancer, MAPK signaling pathway, IL-17 signaling pathway, NF-kappaB signaling pathway, etc. The results of animal experimental validation showed that SHTB significantly reduced the expression levels of p-p38 and p-ERK proteins in the colon tissue of the STC rats. CONCLUSION: This study preliminarily demonstrated that efficacy enhancement and toxicity reduction of SHTB could be achieved after compatibility, which expounded the connotation of compatibility theory of traditional Chinese medicine from the perspective of chemical composition, reflecting the rationality and scientificity of compatibility theory. Meanwhile, the study also revealed the core targets and potential molecular biological mechanisms of SHTB in the treatment of STC, which may serve as a reference for subsequent studies and clinical applications of SHTB.