Sorbitol

CAS# 50-70-4

Sorbitol

Catalog No. BCX0672----Order now to get a substantial discount!

Product Name & Size Price Stock
Sorbitol: 5mg Please Inquire In Stock
Sorbitol: 10mg Please Inquire In Stock
Sorbitol: 20mg Please Inquire Please Inquire
Sorbitol: 50mg Please Inquire Please Inquire
Sorbitol: 100mg Please Inquire Please Inquire
Sorbitol: 200mg Please Inquire Please Inquire
Sorbitol: 500mg Please Inquire Please Inquire
Sorbitol: 1000mg Please Inquire Please Inquire
Related Products
  • Allitol

    Catalog No.:BCN5593
    CAS No.:488-44-8
  • Dulcitol

    Catalog No.:BCN8153
    CAS No.:608-66-2
  • D-Mannitol

    Catalog No.:BCN2205
    CAS No.:69-65-8

Quality Control of Sorbitol

Number of papers citing our products

Chemical structure

Sorbitol

3D structure

Chemical Properties of Sorbitol

Cas No. 50-70-4 SDF Download SDF
PubChem ID 5780.0 Appearance Powder
Formula C6H14O6 M.Wt 182.17
Type of Compound N/A Storage Desiccate at -20°C
Solubility Soluble in Chloroform,Dichloromethane,Ethyl Acetate,DMSO,Acetone,etc.
Chemical Name (2R,3R,4R,5S)-hexane-1,2,3,4,5,6-hexol
SMILES C(C(C(C(C(CO)O)O)O)O)O
Standard InChIKey FBPFZTCFMRRESA-JGWLITMVSA-N
Standard InChI InChI=1S/C6H14O6/c7-1-3(9)5(11)6(12)4(10)2-8/h3-12H,1-2H2/t3-,4+,5-,6-/m1/s1
General tips For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months.
We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months.
Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it.
About Packaging 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial.
2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial.
3. Try to avoid loss or contamination during the experiment.
Shipping Condition Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request.

Sorbitol Dilution Calculator

Concentration (start)
x
Volume (start)
=
Concentration (final)
x
Volume (final)
 
 
 
C1
V1
C2
V2

calculate

Sorbitol Molarity Calculator

Mass
=
Concentration
x
Volume
x
MW*
 
 
 
g/mol

calculate

Preparing Stock Solutions of Sorbitol

1 mg 5 mg 10 mg 20 mg 25 mg
1 mM 5.4894 mL 27.4469 mL 54.8938 mL 109.7876 mL 137.2345 mL
5 mM 1.0979 mL 5.4894 mL 10.9788 mL 21.9575 mL 27.4469 mL
10 mM 0.5489 mL 2.7447 mL 5.4894 mL 10.9788 mL 13.7234 mL
50 mM 0.1098 mL 0.5489 mL 1.0979 mL 2.1958 mL 2.7447 mL
100 mM 0.0549 mL 0.2745 mL 0.5489 mL 1.0979 mL 1.3723 mL
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations.

Organizitions Citing Our Products recently

 
 
 

Calcutta University

University of Minnesota

University of Maryland School of Medicine

University of Illinois at Chicago

The Ohio State University

University of Zurich

Harvard University

Colorado State University

Auburn University

Yale University

Worcester Polytechnic Institute

Washington State University

Stanford University

University of Leipzig

Universidade da Beira Interior

The Institute of Cancer Research

Heidelberg University

University of Amsterdam

University of Auckland
TsingHua University
TsingHua University
The University of Michigan
The University of Michigan
Miami University
Miami University
DRURY University
DRURY University
Jilin University
Jilin University
Fudan University
Fudan University
Wuhan University
Wuhan University
Sun Yat-sen University
Sun Yat-sen University
Universite de Paris
Universite de Paris
Deemed University
Deemed University
Auckland University
Auckland University
The University of Tokyo
The University of Tokyo
Korea University
Korea University
Featured Products
New Products
 

References on Sorbitol

First Report of Dickeya dadantii Causing Potato Blackleg in Fujian Province China.[Pubmed:38687907]

Plant Dis. 2024 Apr 30.

Blackleg and soft rot are harmful diseases in potato (Solanum tuberosum) caused by Pectobacterium spp. and Dickeya spp. (Czajkowski et al. 2015). The occurrence of potato blackleg was serious in potato-producing areas around Xiapu County in Fujian Province, China, in 2021 (6 ha) and 2022 (7 ha), with an incidence of approximately 5%, which reached nearly 23%. Three diseased plants were collected to isolate the pathogen. Single colonies from each sampled plant were isolated and streaked onto fresh plates. DNA from three colonies from different plants was PCR amplified with primer pair 27F/1492R (Lane 1991) for the 16S rRNA gene. Since the sequences were identical, we selected strain M2-3 for further analysis. The strain M2-3 was gram-negative, pectolytic on CVP, grew at 37 degrees C and 5% NaCl. The bacterium was positive for phosphatase activity, erythromycin sensitivity, indole production, gelatin liquefaction, malonic utilization, and acid production from, melibiose, raffinose, and arabinose. The bacterium was negative for sucrose, alpha-methyl glucoside, Sorbitol, trehalose, lactose, and sodium citrate (Fujimoto et al. 2018;),although sucrose and lactose did not provide the expected results, there are exception in all species. The genome of strain M2-3 was sequenced and deposited in the NCBI database under accession numbers: CP077422. An Average Nucleotide Identity (ANI) analysis showed that M2-3 clustered with other D. dadantii strains and has a 98.39% identity with D. dadantii strain DSM 18020 (CP023467). The housekeeping genes (recA, dnaX, acnA, gapA, icd, mdh, mtlD and pgi) were amplified with primer pairs designed previously(Fujimoto et al. 2018; Ma et al. 2007) and sequenced. A multilocus sequence analysis (MLSA) was performed by concatenating the 8 gene sequences and constructing a maximum likelihood phylogenetic tree using PhyloSuite version 1.2.1 (Zhang et al. 2020) and IQ-tree version 1.6.8 (Nguyen et al. 2015) software. Strain M2-3 was clustered together with Dickeya dadantii. For the pathogenicity test, three plants per treatment, totaling nine plants, were used. Bacterial suspensions (1x10;8 CFU/mL) were made in a 10mM PBS buffer. 10 muL of M2-3, D. dadantii type strain 18020 (positive control), and buffer (negative control) were injected into the plant stems near the base. Water stains appeared at the site of inoculation after 2 days and they gradually became black and rotten. The leaves became yellow and wilted, and the petiole base rotted within 5 days of inoculation completing the Koch postulate. According to average nucleotide identity and housekeeping gene sequence analysis, strain M2-3 was identified as Dickeya dadantii. Previous studies have reported several pathogens that cause potato blackleg in China, including P. atrosepticum, P. carotovorum, P. brasiliense, P. parmentieri, P. polaris, and P. punjabense (Li-ping et al. 2020; Wang et al. 2021). To the best of our knowledge, this study is the first to report potato blackleg disease caused by Dickeya dadantii in Fujian Province, China. This finding suggests that this pathogen may cause a threat to potato production in Fujian Province.

First Report of Pectobacterium polaris Causing Soft Rot on Broccoli in China.[Pubmed:38687572]

Plant Dis. 2024 Apr 30.

In April 2023, soft rot symptoms were observed in broccoli (Brassica oleracea L. var. italica) commercial fields in Songming County, Yunnan province, China (103 degrees 12'E, 25 degrees 31'N). The disease incidence in these fields (6 ha in size) was high, exceeding 50%, and it caused significant yield loss. The affected plants displayed characteristic symptoms, with the roots and stems of broccoli becoming soft, yellowish-brown, rotten, and emitting a foul odor. To identify the causal agent, soft rot symptomatic stems were surface sterilized by dipping them in 75% ethanol for 30 seconds, followed by three successive rinses with sterile distilled water. Tissue specimens were then plated onto nutrient agar (NA) plates and incubated at 28 degrees C for 24 hours. (Wang et al. 2022). Three representative bacterial isolates HYC22041801-HYC22041803 from broccoli were selected for further analysis. The colonies on NA plates appeared as white, small, round, and translucent with smooth edges. Physiological and biochemical tests were performed, along with 96 phenotypic screenings using the BIOLOG GENIII microplate system (Biolog, Hayward, CA, USA). Three isolates were negative for D-arabitol, maltose, and Sorbitol, but were positive for cellobiose, alpha-D-glucose, sucrose, glycerol and gentiobiose tests, which are consistent with the reported type strain P. polaris NIBIO1006T (Chen et al. 2021). Total genomic DNA was extracted from three bacterial isolates using the QIAamp DNA Mini Kit (QIAGEN, USA). The 16S rRNA region and nine housekeeping genes (gapA, icdA, mdh, mtlD, pel, pgi, pmrA, proA and rpoS) were amplified with universal primers 27F/1492R (Monciardini et al., 2006) and designed specific primers (Xie et al., 2018), respectively. All amplicons were sequenced and deposited in GenBank with accession numbers ON723841-ON723843 and ON723846-ON723872. The BLASTn analysis of the 16S rRNA amplicons confirmed that the isolates HYC22041801-HYC22041803 belonged to the genus Pectobacterium. Phylogenetic trees based on 16S rRNA gene sequences and multilocus sequence analysis of other nine housekeeping genes of the three isolates were constructed and the results revealed that three isolates clustered with P. polaris type strain NIBIO1006T, which was previously isolated from potato (Dees et al., 2017). To confirm the pathogenicity, nine broccoli seedlings were stab inoculated with a bacterial suspension (108 CFU.ml-1), while sterile distilled liquid LB medium was used as a negative control. The seedlings were kept at 80% relative humidity and 28 degrees C in a growth chamber. Three trials were conducted per isolate (HYC22041801-HYC22041803). After 3 days, the inoculated petioles showed soft rot symptoms similar to those observed initially in the field, while control plants remained asymptomatic. All three isolates were re-isolated successfully from symptomatic tissues to complete Koch's postulates. P. polaris has been previously reported as the causative agent of blackleg in potato in several countries, including Norway, Poland, Russia, and China (Handique et al. 2022; Wang et al. 2022). Additionally, it was reported to cause soft rot in Chinese cabbage in China (Chen et al. 2021). However, this is the first report of P. polaris causing soft rot disease in broccoli in China. This discovery is of great importance for vegetable growers because this bacterium is well established on Cruciferous vegetables in the local area, and effective measures are needed to manage this disease.

Design and evaluation of nanostructured lipid carrier of Bergenin isolated from Pentaclethra macrophylla for anti-inflammatory effect on lipopolysaccharide-induced inflammatory responses in macrophages.[Pubmed:38685438]

Eur J Pharm Biopharm. 2024 Apr 27:114307.

Herein, we report the properties of nanostructured lipid carriers (NLCs) prepared with a gradient concentration of Bergenin (BGN) isolated from Pentaclethra macrophylla stem bark powder. A gradient concentration of BGN (BGN 0, 50, 100, 150, and 200 mg) was prepared in a 5 % lipid matrix consisting of Transcutol HP (75 %), Phospholipon 90H (15 %), and Gelucire 43/01 (10 %) to which a surfactant aqueous phase consisting of Tween 80, Sorbitol, and sorbic acid was dissolved. The NLCs were evaluated by size, polydispersity index (PDI), zeta potential, Fourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC), encapsulation efficiency, and in vitro drug release. The result shows polydispersed nanoparticles with high drug encapsulation (94.26-99.50 %). The nanoparticles were mostly spherical, but those from the 50 mg BGN batch were more cuboidal than spherical. The drug release was highest from the latter to the tune of 40 % compared to the pure BGN solution, which released about 15 % BGN. The anti-inflammatory activity of the BGN-NLC and total plant extract was studied on lipopolysaccharide (LPS)-inflamed macrophages. The cell study showed that BGN and plant extract had low cytotoxicity on macrophages and exhibited a dose-dependent anti-inflammatory effect on the LPS-induced inflammatory process in macrophages.

Antifungal activity of Caryocar brasiliense Camb. alone or along with antifungal agents against multidrug-resistant Candida auris.[Pubmed:38677574]

J Ethnopharmacol. 2024 Apr 25:118240.

ETHNOPHARMACOLOGICAL RELEVANCE: Candida auris poses a severe global health threat, with many strains resistant to antifungal treatments, complicating therapy. Exploring natural compounds alongside conventional drugs offers promising therapeutic avenues. The antifungal potential of the ethanolic extract from Caryocar brasiliense (Cb-EE), a plant native to the Brazilian cerrado and renowned for its medicinal properties, was investigated against C. auris. AIM OF THE STUDY: The study examined the chemical composition, antifungal activity, mechanisms of action, and in vivo effects of Cb-EE. MATERIALS AND METHODS: Leaves of C. brasiliense were processed to extract ethanolic extract, which was evaluated for phenolic compounds, flavonoids, and tannins. The antifungal capacity was determined through broth microdilution and checkerboard methods, assessing interaction with conventional antifungals. RESULTS: Cb-EE demonstrated fungistatic activity against various Candida species and Cryptococcus neoformans. Synergy with fluconazole and additive effects with other drugs were observed. Cb-EE inhibited C. auris growth, with the combination of fluconazole extending inhibition. Mechanistic studies revealed interference with fungal membranes, confirmed by Sorbitol protection assays, cellular permeability tests, and scanning electron microscopy (SEM). Hemocompatibility and in vivo toxicity tests on Tenebrio molitor showed safety. CONCLUSION: Cb-EE, alone or in combination with fluconazole, effectively treated C. auris infections in vitro and in vivo, suggesting its prospective role as an antifungal agent against this emerging pathogen.

Evaluation of Printability of PVA-Based Tablets from Powder and Assessment of Critical Rheological Parameters.[Pubmed:38675214]

Pharmaceutics. 2024 Apr 19;16(4):553.

Fused deposition modeling (FDM) is a rather new technology in the production of personalized dosage forms. The melting and printing of polymer-active pharmaceutical ingredient (API)-mixtures can be used to produce oral dosage forms with different dosage as well as release behavior. This process is utilized to increase the bioavailability of pharmaceutically relevant active ingredients that are poorly soluble in physiological medium by transforming them into solid amorphous dispersions (ASD). The release from such ASDs is expected to be faster and higher compared to the raw materials and thus enhance bioavailability. Printing directly from powder while forming ASDs from loperamide in Polyvinylalcohol was realized. Different techniques such as a change in infill and the incorporation of Sorbitol as a plastisizer to change release patterns as well as a non-destructive way for the determination of API distribution were shown. By measuring the melt viscosities of the mixtures printed, a rheological model for the printer used is proposed.

Understanding the Interaction of Thermal, Rheological, and Mechanical Parameters Critical for the Processability of Polyvinyl Alcohol-Based Systems during Hot Melt Extrusion.[Pubmed:38675133]

Pharmaceutics. 2024 Mar 28;16(4):472.

Hot melt extrusion (HME) is a common manufacturing process used in the pharmaceutical industry to improve the solubility of poorly soluble active pharmaceutical ingredients (API). The goal is to create an amorphous solid dispersion (ASD) where the amorphous form of the API is stabilized within a polymer matrix. Traditionally, the development of pharmaceutically approved polymers has focused on requirements such as thermal properties, solubility, drug-polymer interactions, and biocompatibility. The mechanical properties of the material have often been neglected in the design of new polymers. However, new downstream methods require more flexible polymers or suitable plasticizer polymer combinations. In this study, two grades of the polymer polyvinyl alcohol (PVA), which is already established for HME, are investigated in terms of their mechanical, rheological, and thermal properties. The mechanical properties of the extruded filaments were tested by the three-point bending test. The rheological behavior was analyzed by oscillating plate measurements. Thermal analysis was performed by differential scanning calorimetry (DSC). In addition, the solid and liquid plasticizers mannitol, Sorbitol, triacetin, triethyl citrate, polyethylene glycol, and glycerol were evaluated for use with PVA and their impact on the polymer properties was elaborated. Finally, the effects of the plasticizers are compared to each other, and the correlations are analyzed statistically using principal component analysis (PCA). Thereby, a clear ranking of the plasticizer effects was established, and a deeper understanding of the polymer-plasticizer interactions was created.

Development of a Measurement System Using Infrared Spectroscopy-Attenuated Total Reflectance, Principal Component Analysis and Artificial Intelligence for the Safe Quantification of the Nucleating Agent Sorbitol in Food Packaging.[Pubmed:38672873]

Foods. 2024 Apr 15;13(8):1200.

Sorbitol derivatives and other additives are commonly used in various products, such as packaging or food packaging, to improve their mechanical, physical, and optical properties. To accurately and precisely evaluate the efficacy of adding Sorbitol-type nucleating agents to these articles, their quantitative determination is essential. This study systematically investigated the quantification of Sorbitol-type nucleating agents in food packaging made from impact copolymers of polypropylene (PP) and polyethylene (PE) using attenuated total reflectance infrared spectroscopy (ATR-FTIR) together with analysis of principal components (PCA) and machine learning algorithms. The absorption spectra revealed characteristic bands corresponding to the C-O-C bond and hydroxyl groups attached to the cyclohexane ring of the molecular structure of Sorbitol, providing crucial information for identifying and quantifying Sorbitol derivatives. PCA analysis showed that with the selected FTIR spectrum range and only the first two components, 99.5% of the variance could be explained. The resulting score plot showed a clear pattern distinguishing different concentrations of the nucleating agent, affirming the predictability of concentrations based on an impact copolymer. The study then employed machine learning algorithms (NN, SVR) to establish prediction models, evaluating their quality using metrics such as RMSE, R(2), and RMSECV. Hyperparameter optimization was performed, and SVR showed superior performance, achieving near-perfect predictions (R(2) = 0.9999) with an RMSE of 0.100 for both calibration and prediction. The chosen SVR model features two hidden layers with 15 neurons each and uses the Adam algorithm, balanced precision, and computational efficiency. The innovative ATR-FTIR coupled SVR model presented a novel and rapid approach to accurately quantify Sorbitol-type nucleating agents in polymer production processes for polymer research and in the analysis of nucleating agent derivatives. The analytical performance of this method surpassed traditional methods (PCR, NN).

Aldose Reductase as a Key Target in the Prevention and Treatment of Diabetic Retinopathy: A Comprehensive Review.[Pubmed:38672103]

Biomedicines. 2024 Mar 27;12(4):747.

The escalating global prevalence of diabetes mellitus (DM) over the past two decades has led to a persistent high incidence of diabetic retinopathy (DR), necessitating screening for early symptoms and proper treatment. Effective management of DR aims to decrease vision impairment by controlling modifiable risk factors including hypertension, obesity, and dyslipidemia. Moreover, systemic medications and plant-based therapy show promise in advancing DR treatment. One of the key mechanisms related to DR pathogenesis is the polyol pathway, through which aldose reductase (AR) catalyzes the conversion of glucose to Sorbitol within various tissues, including the retina, lens, ciliary body and iris. Elevated glucose levels activate AR, leading to osmotic stress, advanced glycation end-product formation, and oxidative damage. This further implies chronic inflammation, vascular permeability, and angiogenesis. Our comprehensive narrative review describes the therapeutic potential of aldose reductase inhibitors in treating DR, where both synthetic and natural inhibitors have been studied in recent decades. Our synthesis aims to guide future research and clinical interventions in DR management.

Dynamic Localization of Paraspeckle Components under Osmotic Stress.[Pubmed:38668381]

Noncoding RNA. 2024 Apr 12;10(2):23.

Paraspeckles are nuclear condensates formed by NEAT1_2 lncRNA and different RNA-binding proteins. In general, these membraneless organelles function in the regulation of gene expression and translation and in miRNA processing, and in doing this, they regulate cellular homeostasis and mediate pro-survival in the cell. Despite evidence showing the importance of paraspeckles in the stress response, the dynamics of paraspeckles and their components under conditions of osmotic stress remain unknown. We exposed HEK293T cells to Sorbitol and examined NEAT1_2 expression using real-time PCR. Localization and quantification of the main paraspeckle components, NEAT1_2, PSPC1, NONO, and SFPQ, in different cellular compartments was performed using smFISH and immunofluorescence. Our findings showed a significant decrease in total NEAT1_2 expression in cells after osmotic stress. Sorbitol shifted the subcellular localization of NEAT1_2, PSPC1, NONO, and SFPQ from the nucleus to the cytoplasm and decreased the number and size of NEAT1_2 foci in the nucleus. PSPC1 formed immunoreactive cytoplasmic fibrils under conditions of osmotic stress, which slowly disassembled under recovery. Our study deepens the paraspeckle dynamics in response to stress, suggesting a novel role for NEAT1_2 in the cytoplasm in osmotic stress and physiological conditions.

Impact of Nutritional Supplements on the Fitness of the Parasitoid Binodoxys communis (Gahan).[Pubmed:38667375]

Insects. 2024 Apr 3;15(4):245.

Alterative nutritional foods consumed by adult parasitoids play an important role in their fitness and ability to control pests because of food scarcity in many crops. While adult parasitoids feed on various sugars, they vary in their nutritional value for parasitoids. We assessed the effects of seven sugars (fructose, glucose, sucrose, trehalose, maltose, melezitose, and Sorbitol) on the longevity, parasitism ability, parasitism behavior, and flight ability of B. communis, an important parasitoid of cotton aphids. We found that access to glucose, sucrose, or fructose, increased B. communis adult longevity more than the other sugars offered. All sugars except trehalose increased the parasitism rate to more than 50% compared to the starved control (only provided with water). We then compared parasitoid behaviors of wasps fed glucose, sucrose, or fructose to that of the starved control (with access only to water) and found that those fed B. communis spent more time either examining or attacking aphids than parasitoids in the control group, which spent more time walking or resting. Also, consumption of glucose, sucrose, or fructose also significantly improved the flight ability (the total flight distance, flight time, and average flight speed) of B. communis.

Structure-based virtual screening of mangiferin derivatives with antidiabetic action: a molecular docking and dynamics study and MPO-based drug-likeness approach.[Pubmed:38665880]

3 Biotech. 2024 May;14(5):135.

Extracts from Mangifera indica leaves and its main component, mangiferin, have proven antidiabetic activity. In this study, mangiferin and its natural derivatives Homomangiferin (HMF), Isomangiferin (IMF), Neomangiferin (NMF), Glucomangiferin (GMF), Mangiferin 6'-gallate (MFG), and Norathyriol (NRT) were compared regarding their action on Diabetes mellitus (DM), employing docking and molecular dynamics (MD) simulations to analyze interactions with the aldose reductase enzyme, the precursor to the conversion of glucose into Sorbitol. Notably, HMF showed significant affinity to residues in the active site of the enzyme, including Trp 79, His 110, Trp 111, Phe 122, and Phe 300, with an energy of - 7.2 kcal/mol, observed in the molecular docking simulations. MD reinforced the formation of stable complexes for HMF and MFG with the aldose reductase, with interaction potential energies (IPE) in the order of - 300.812 +/- 52 kJ/mol and - 304.812 +/- 52 kJ/mol, respectively. The drug-likeness assessment, by multiparameter optimization (MPO), highlighted that HMF and IMF have similarities with polyphenols and glycosidic flavonoids recently patented as antidiabetics, revealing that high polarity (TPSA > 180 A(2)) is a favorable property for subcutaneous administration, especially because of the gradual passive cell permeability values in biological tissues, with P(app) values estimated at < 10 x 10(-6) cm/s. These compounds are metabolically stable against metabolic enzymes, resulting in a low toxic incidence by metabolic activation, corroborating with a lethal dose (LD(50)) greater than 2000 mg/kg. In this way, HMF showed a systematic alignment between predicted pharmacokinetics and pharmacodynamics, characterizing it as the most favorable substance for inhibiting aldose reductase. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-024-03978-9.

Assessment of Oral Masticatory Muscle Activity With Different Chewing Gums: A Cross-Sectional Study Based on Electromyogram Analysis.[Pubmed:38659520]

Cureus. 2024 Mar 24;16(3):e56849.

BACKGROUND: Facial muscles, particularly those involved in mastication, play a pivotal role in the chewing process. Despite their influence on chewing, these muscles undergo alterations during mastication. Examining the relationship between chewed substances and muscle activity can provide insights into various pathological processes and aid in the development of therapeutic chewing techniques. AIM: This study aimed to evaluate the impact of different commercially available chewing gums on the activity of key masticatory muscles. METHOD: Twenty-two participants were recruited for the study. They were instructed to chew four commercially available gums: group 1 comprised sugar gum with a strong flavor; group 2 included gum containing Sorbitol; group 3 consisted of gum containing xylitol; and group 4 provided sugar gum with a mild flavor. Electromyogram (EMG) recordings were utilized to assess muscle activity. Various aspects of muscle activity, including chewing time, maximum muscle potential, and coordination between different muscles, were evaluated. Data tabulation and analysis were performed using IBM SPSS software version 23.0 (IBM Corp., Armonk, NY). RESULT: Analysis revealed that in terms of temporalis symmetry, group 2 exhibited the highest mean deviation, while for masseter symmetry, group 3 demonstrated the highest mean deviation. The total deviation for the temporalis and masseter muscles was 72.16% and 65.55%, respectively, indicating greater symmetry in the temporalis muscle. Additionally, group 3 displayed the highest mean deviation in both left and right-sided synergic activity of the muscles. The total deviation for the right and left sides was 64.34% and 65.67%, respectively. CONCLUSION: The findings suggest that sugar-free chewing gums elicit increased muscle activity compared to sugar-containing chewing gums. Furthermore, the utilization of calorie-free chewing gums with a firm texture was associated with better-coordinated muscle activity. These results provide valuable insights into the effects of different chewing gums on masticatory muscle function and coordination, which may have implications for therapeutic interventions and oral health management.

[(18)F]2-fluoro-2-deoxy-sorbitol ([(18)F]FDS) PET imaging repurposed for quantitative estimation of blood-brain barrier permeability in a rat model of Alzheimer's disease.[Pubmed:38657857]

Ann Pharm Fr. 2024 Apr 22:S0003-4509(24)00061-0.

Numerous studies suggest that blood-brain barrier (BBB) dysfunction may contribute to the progression of Alzheimer's disease (AD). Clinically available neuroimaging methods are needed for quantitative "scoring" of BBB permeability in AD patients. [(18)F]2-fluoro-2-deoxy-Sorbitol ([(18)F]FDS), which can be easily obtained from simple chemical reduction of commercial [(18)F]2-fluoro-2-deoxy-glucose ([(18)F]FDG), was investigated as a small-molecule marker of BBB permeability, in a preclinical model of AD using in vivo PET imaging. Chemical reduction of [(18)F]FDG to [(18)F]FDS was obtained with a 100% conversion yield. Dynamic PET acquisitions were performed in the APP/PS1 rat model of AD (TgF344-AD, n=3) compared with age-matched littermates (WT, n=4). The brain uptake of [(18)F]FDS was determined in selected brain regions, delineated from a coregistered rat brain template. The brain uptake of [(18)F]FDS in the brain regions of AD rats versus WT rats was compared using a 2-way ANOVA. The uptake of [(18)F]FDS was significantly higher in the whole-brain of AD rats, as compared with WT rats (p<0.001), suggesting increased BBB permeability. Enhanced brain uptake of [(18)F]FDS in AD rats was significantly different across brain regions (p<0.001). Minimum difference was observed in the amygdala (+89.0+/-7.6%, p<0.001) and maximum difference was observed in the midbrain (+177.8+/-29.2%, p<0.001). [(18)F]FDS, initially proposed as radiopharmaceutical to estimate renal filtration using PET imaging, can be repurposed for non-invasive and quantitative determination of BBB permeability in vivo. Making the best with the quantitative properties of PET imaging, it was possible to estimate the extent of enhanced BBB permeability in a rat model of AD.

Production of biliverdin by biotransformation of exogenous heme using recombinant Pichia pastoris cells.[Pubmed:38647967]

Bioresour Bioprocess. 2024 Feb 1;11(1):19.

Biliverdin, a bile pigment hydrolyzed from heme by heme oxygenase (HO), serves multiple functions in the human body, including antioxidant, anti-inflammatory, and immune response inhibitory activities. Biliverdin has great potential as a clinical drug; however, no economic and efficient production method is available currently. Therefore, the production of biliverdin by the biotransformation of exogenous heme using recombinant HO-expressing yeast cells was studied in this research. First, the heme oxygenase-1 gene (HO1) encoding the inducible plastidic isozyme from Arabidopsis thaliana, with the plastid transport peptide sequence removed, was recombined into Pichia pastoris GS115 cells. This resulted in the construction of a recombinant P. pastoris GS115-HO1 strain that expressed active HO1 in the cytoplasm. After that, the concentration of the inducer methanol, the induction culture time, the pH of the medium, and the concentration of Sorbitol supplied in the medium were optimized, resulting in a significant improvement in the yield of HO1. Subsequently, the whole cells of GS115-HO1 were employed as catalysts to convert heme chloride (hemin) into biliverdin. The results showed that the yield of biliverdin was 132 mg/L when hemin was added to the culture of GS115-HO1 and incubated for 4 h at 30 degrees C. The findings of this study have laid a good foundation for future applications of this method for the economical production of biliverdin.

Keywords:

Sorbitol,50-70-4,Natural Products, buy Sorbitol , Sorbitol supplier , purchase Sorbitol , Sorbitol cost , Sorbitol manufacturer , order Sorbitol , high purity Sorbitol

Online Inquiry for:

      Fill out the information below

      • Size:Qty: - +

      * Required Fields

                                      Result: