Acetic acid hexyl esterCAS# 142-92-7 |
Quality Control & MSDS
Number of papers citing our products
Chemical structure
3D structure
Cas No. | 142-92-7 | SDF | Download SDF |
PubChem ID | 8908 | Appearance | Oil |
Formula | C8H16O2 | M.Wt | 144.2 |
Type of Compound | Miscellaneous | Storage | Desiccate at -20°C |
Solubility | Soluble in Chloroform,Dichloromethane,Ethyl Acetate,DMSO,Acetone,etc. | ||
Chemical Name | hexyl acetate | ||
SMILES | CCCCCCOC(=O)C | ||
Standard InChIKey | AOGQPLXWSUTHQB-UHFFFAOYSA-N | ||
Standard InChI | InChI=1S/C8H16O2/c1-3-4-5-6-7-10-8(2)9/h3-7H2,1-2H3 | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
Description | Reference standards. |
Acetic acid hexyl ester Dilution Calculator
Acetic acid hexyl ester Molarity Calculator
1 mg | 5 mg | 10 mg | 20 mg | 25 mg | |
1 mM | 6.9348 mL | 34.6741 mL | 69.3481 mL | 138.6963 mL | 173.3703 mL |
5 mM | 1.387 mL | 6.9348 mL | 13.8696 mL | 27.7393 mL | 34.6741 mL |
10 mM | 0.6935 mL | 3.4674 mL | 6.9348 mL | 13.8696 mL | 17.337 mL |
50 mM | 0.1387 mL | 0.6935 mL | 1.387 mL | 2.7739 mL | 3.4674 mL |
100 mM | 0.0693 mL | 0.3467 mL | 0.6935 mL | 1.387 mL | 1.7337 mL |
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations. |
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
- Morindin
Catalog No.:BCN9823
CAS No.:60450-21-7
- Eclalbasaponin II
Catalog No.:BCN9822
CAS No.:78285-90-3
- Cimicifugic acid F
Catalog No.:BCN9821
CAS No.:220618-91-7
- beta-Citronellol
Catalog No.:BCN9820
CAS No.:106-22-9
- trans-Fertaric acid
Catalog No.:BCN9819
CAS No.:74282-22-7
- Tricetin
Catalog No.:BCN9818
CAS No.:520-31-0
- Withanoside V
Catalog No.:BCN9817
CAS No.:256520-90-8
- 3-Aminocoumarin
Catalog No.:BCN9816
CAS No.:1635-31-0
- 7-Ethoxy-4-methylcoumarin
Catalog No.:BCN9815
CAS No.:87-05-8
- Vicinin 2
Catalog No.:BCN9814
CAS No.:90456-53-4
- 1,2,3-Tri-n-Octanoylglycerol
Catalog No.:BCN9813
CAS No.:538-23-8
- Norcamphor
Catalog No.:BCN9812
CAS No.:497-38-1
- Grayanotoxin I
Catalog No.:BCN9825
CAS No.:4720-09-6
- Vaccarin E
Catalog No.:BCN9826
CAS No.:2252345-81-4
- 6-Hydroxyflavone
Catalog No.:BCN9827
CAS No.:6665-83-4
- Picrotoxinin
Catalog No.:BCN9828
CAS No.:17617-45-7
- 4,4'-Dimethoxychalcone
Catalog No.:BCN9829
CAS No.:2373-89-9
- Urushiol (15:1)
Catalog No.:BCN9830
CAS No.:35237-02-6
- 28-Homobrassinolide
Catalog No.:BCN9831
CAS No.:82373-95-3
- Ethyl caproate
Catalog No.:BCN9832
CAS No.:123-66-0
- Teupolioside
Catalog No.:BCN9833
CAS No.:143617-02-1
- BIX 01294 Trihydrochloride
Catalog No.:BCN9834
CAS No.:1392399-03-9
- 6,7-Bis(benzyloxy)coumarin
Catalog No.:BCN9835
CAS No.:909-84-2
- Urushiol (15:2)
Catalog No.:BCN9836
CAS No.:83258-37-1
A study revealing volatile aroma produced by Pediococcus pentosaceus in dough fermentation.[Pubmed:32994968]
Food Sci Nutr. 2020 Aug 3;8(9):5077-5085.
Pediococcus pentosaceus is important probiotics in Chinese Laomian. Its role in meat and fermented vegetable has been largely demonstrated, but few studies have investigated the role of P. pentosaceus in Chinese Laomian. For this purpose, we simulated Laomian fermentation using Saccharomyces cerevisiae and P. pentosaceus. Volatile aroma was detected by headspace solid-phase microextraction gas-chromatography-mass spectrometry. Real-time fluorescent quantitative polymerase chain reaction was used to determine dynamic growth of S. cerevisiae and P. pentosaceus in fermentation. Extracellular proteins were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Folin-Ciocalteu method was used to detect extracellular protease activity in different pH values. Owing to addition of P. pentosaceus, the types and contents of esters increase, the relative contents of Acetic acid hexyl ester, formic acid octyl ester, and heptanoic acid ethyl ester rise obliviously; especially, the relative content of hexanoic acid ethyl ester was highly correlated with P. pentosaceus by increasing 20.61%. As the gel electrophoresis results display, due to mixed fermentation of S. cerevisiae and P. pentosaceus, the 25k Da and 51k Da proteins expression quantity of P. pentosaceus clearly increased. Under neutral and alkaline culture conditions, the extracellular protease activity of P. pentosaceus is higher. This research benefits to gain insight into the fermentation actions of P. pentosaceus in Chinese Laomian.
Identification of volatile components from oviposition and non-oviposition plants of Gasterophilus pecorum (Diptera: Gasterophilidae).[Pubmed:32978441]
Sci Rep. 2020 Sep 25;10(1):15731.
Oviposition by Gasterophilus pecorum on shoot tips of Stipa caucasica is a key determinant of its severe infection of the reintroduced Przewalski's horse (Equus przewalskii). Volatiles in shoots of grasses on which Przewalski's horse feeds, including S. caucasica at preoviposition, oviposition, and postoviposition stages of G. pecorum, S. caucasica, Stipa orientalis, and Ceratoides latens at the oviposition stage, and S. caucasica in various growth periods, were collected by dynamic headspace adsorption and analyzed by automatic thermal desorption gas chromatography-mass spectrometry. Among five volatiles with highest relative contents under three sets of conditions, caprolactam and 3-hexen-1-ol,(Z)- were common to all samples. Caprolactam was highest in C. latens at oviposition stage of G. pecorum and lowest in S. caucasica at postoviposition stage, and that of 3-hexen-1-ol,(Z)- was lowest in C. latens and highest in S. caucasica at its oviposition stage. Particularly, in S. caucasica during the three oviposition phenological stages of G. pecorum, 3-hexen-1-ol,acetate,(Z)-, 2(5H)-furanone,5-ethyl-, and 3-hexen-1-ol,acetate,(E)- were unique, respectively, to the preoviposition, oviposition, and postoviposition stages; in three plant species during the oviposition stage of G. pecorum, 3-hexen-1-ol,acetate,(Z)-, 3-hexenal, and 1-hexanol were unique to S. orientalis, acetic acid, hexanal, and 2(5H)-furanone,5-ethyl- to S. caucasica, and 1,3,6-octatriene,3,7-dimethyl-, cis-3-hexenyl isovalerate, and Acetic acid hexyl ester to C. latens; in S. caucasica, 2-undecanone,6,10-dimethyl- was unique to the early growth period, acetic acid and 2(5H)-furanone,5-ethyl- to the flourishing growth period, and 3-hexen-1-ol,acetate,(Z)- and 1,3,6-octatriene,3,7-dimethyl- to the late growth period. Furthermore, substances specific to S. orientalis and C. latens were also present in S. caucasica, except at oviposition stage. Our findings will facilitate studies on G. pecorum's adaptation to the arid desert steppe and its future control.
Manipulation of sensory characteristics and volatile compounds in strawberry fruit through the use of isolated wavelengths of light.[Pubmed:32043600]
J Food Sci. 2020 Mar;85(3):771-780.
Consumers consistently note that there is room for improvement in the flavor of commercial strawberries. Fruit flavor and aroma are affected by both genetics and environment. This work tests the hypothesis that sensory quality may be manipulated using postharvest light treatments. Individual detached fruits representing two different cultivars received a 24-hr treatment of 100 micromol m(-2) s(-1) blue LED light while the control was kept in complete darkness. Following treatment, samples were analyzed for flavor volatiles, sugars, acids, firmness, and sensory differences in human trials. Fruits were rated for overall liking, texture, sweetness, sourness, and overall strawberry flavor intensity (OSFI) on the sensory and hedonic versions of the global intensity scale (GIS). A positive treatment effect was observed for "Strawberry Festival" fruit for the overall liking rating. A triangle test revealed a significant treatment effect, as light-treated fruit tested higher in many flavor volatiles including those known to contribute to sweetness in strawberries. Levels of several volatiles were consistently higher in the treated fruit across all four harvests: Acetic acid hexyl ester, butanoic acid octyl ester, methyl isovalerate, and pentanoic acid ethyl ester. The results show that postharvest light treatment can be used to modulate sensory quality of fruit, perhaps offering a means to complement genetic efforts in fruit flavor and aroma improvement. PRACTICAL APPLICATION: The results indicate that it may be possible to increase the sensory quality of strawberry fruits using an inexpensive and noninvasive light treatment. Light may be applied during transport or storage to improve fruit quality. This concept could also be extended into other realms of storage, such as residential and commercial refrigeration, further increasing the quality impact of the approach.