Araloside CCAS# 55446-15-6 |
2D Structure
Quality Control & MSDS
3D structure
Package In Stock
Number of papers citing our products
Cas No. | 55446-15-6 | SDF | Download SDF |
PubChem ID | 154572707.0 | Appearance | Powder |
Formula | C53H84O23 | M.Wt | 1089.23 |
Type of Compound | Triterpenoids | Storage | Desiccate at -20°C |
Solubility | Soluble in Chloroform,Dichloromethane,Ethyl Acetate,DMSO,Acetone,etc. | ||
Chemical Name | (2S,3S,4R,5R,6R)-6-[[(3S,4aR,6aR,6bS,8aS,12aS,14aR,14bR)-4,4,6a,6b,11,11,14b-heptamethyl-8a-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxycarbonyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy]-3-[(2S,3R,4S,5R)-3,5-dihydroxy-4-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-4,5-dihydroxyoxane-2-carboxylic acid | ||
SMILES | CC1(CCC2(CCC3(C(=CCC4C3(CCC5C4(CCC(C5(C)C)OC6C(C(C(C(O6)C(=O)O)OC7C(C(C(CO7)O)OC8C(C(C(C(O8)CO)O)O)O)O)O)O)C)C)C2C1)C)C(=O)OC9C(C(C(C(O9)CO)O)O)O)C | ||
Standard InChIKey | DBUJWVDNMXCCKD-MVIACUKKSA-N | ||
Standard InChI | InChI=1S/C53H84O23/c1-48(2)14-16-53(47(68)76-45-36(63)33(60)31(58)26(20-55)71-45)17-15-51(6)22(23(53)18-48)8-9-28-50(5)12-11-29(49(3,4)27(50)10-13-52(28,51)7)72-46-37(64)34(61)40(41(75-46)42(66)67)74-43-38(65)39(24(56)21-69-43)73-44-35(62)32(59)30(57)25(19-54)70-44/h8,23-41,43-46,54-65H,9-21H2,1-7H3,(H,66,67)/t23-,24+,25+,26+,27-,28+,29-,30+,31+,32-,33-,34+,35+,36+,37+,38+,39-,40-,41-,43-,44-,45-,46+,50-,51+,52+,53-/m0/s1 | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
Araloside C Dilution Calculator
Araloside C Molarity Calculator
1 mg | 5 mg | 10 mg | 20 mg | 25 mg | |
1 mM | 0.9181 mL | 4.5904 mL | 9.1808 mL | 18.3616 mL | 22.952 mL |
5 mM | 0.1836 mL | 0.9181 mL | 1.8362 mL | 3.6723 mL | 4.5904 mL |
10 mM | 0.0918 mL | 0.459 mL | 0.9181 mL | 1.8362 mL | 2.2952 mL |
50 mM | 0.0184 mL | 0.0918 mL | 0.1836 mL | 0.3672 mL | 0.459 mL |
100 mM | 0.0092 mL | 0.0459 mL | 0.0918 mL | 0.1836 mL | 0.2295 mL |
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations. |
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
- Dihydrolanosterol
Catalog No.:BCX1265
CAS No.:911660-54-3
- Tarasaponin IV
Catalog No.:BCX1264
CAS No.:156980-31-3
- Fallacinol
Catalog No.:BCX1263
CAS No.:569-05-1
- Isoasiaticoside
Catalog No.:BCX1262
CAS No.:948827-09-6
- Tenacissoside A
Catalog No.:BCX1261
CAS No.:107352-30-7
- cis-Pellitorine
Catalog No.:BCX1260
CAS No.:639086-18-3
- Brevicornin
Catalog No.:BCX1259
CAS No.:173792-49-9
- Stipuleanoside R2
Catalog No.:BCX1258
CAS No.:96627-72-4
- Tibesaikosaponin V
Catalog No.:BCX1257
CAS No.:2319668-87-4
- Tenaxin I
Catalog No.:BCX1256
CAS No.:86926-52-5
- Ophiopogonanone D
Catalog No.:BCX1255
CAS No.:1027912-99-7
- Casuarictin
Catalog No.:BCX1254
CAS No.:79786-00-8
- 3-epi-Bufalin
Catalog No.:BCX1267
CAS No.:465-20-3
- Scheffoleoside A
Catalog No.:BCX1268
CAS No.:160669-23-8
- Demethyldaphnoretin-7-O-glucoside
Catalog No.:BCX1269
CAS No.:438578-91-7
- Protoanemonin
Catalog No.:BCX1270
CAS No.:108-28-1
- Sinomenine N-oxide
Catalog No.:BCX1271
CAS No.:1000026-77-6
- 6-Hydroxyluteolin
Catalog No.:BCX1272
CAS No.:18003-33-3
- Phenoxodiol
Catalog No.:BCX1273
CAS No.:81267-65-4
- 2'-O-Methylphloretin
Catalog No.:BCX1274
CAS No.:111316-17-7
- 2',4,4',6'-Tetramethoxychalcone
Catalog No.:BCX1275
CAS No.:94103-36-3
- Hispidol
Catalog No.:BCX1276
CAS No.:5786-54-9
- N-Acetylcytisine
Catalog No.:BCX1277
CAS No.:6018-52-6
- Palvanil
Catalog No.:BCX1278
CAS No.:69693-13-6
Integrated Bioinformatics Analysis and Verification of Gene Targets for Myocardial Ischemia-Reperfusion Injury.[Pubmed:35463067]
Evid Based Complement Alternat Med. 2022 Apr 15;2022:2056630.
BACKGROUND: Myocardial ischemia-reperfusion injury (MIRI) has become a thorny and unsolved clinical problem. The pathological mechanisms of MIRI are intricate and unclear, so it is of great significance to explore potential hub genes and search for some natural products that exhibit potential therapeutic efficacy on MIRI via targeting the hub genes. METHODS: First, the differential expression genes (DEGs) from GSE58486, GSE108940, and GSE115568 were screened and integrated via a robust rank aggregation algorithm. Then, the hub genes were identified and verified by the functional experiment of the MIRI mice. Finally, natural products with protective effects against MIRI were retrieved, and molecular docking simulations between hub genes and natural products were performed. RESULTS: 230 integrated DEGs and 9 hub genes were identified. After verification, Emr1, Tyrobp, Itgb2, Fcgr2b, Cybb, and Fcer1g might be the most significant genes during MIRI. A total of 75 natural products were discovered. Most of them (especially Araloside C, glycyrrhizic acid, ophiopogonin D, polyphyllin I, and punicalagin) showed good ability to bind the hub genes. CONCLUSIONS: Emr1, Tyrobp, Itgb2, Fcgr2b, Cybb, and Fcer1g might be critical in the pathological process of MIRI, and the natural products (Araloside C, glycyrrhizic acid, ophiopogonin D, polyphyllin I, and punicalagin) targeting these hub genes exhibited potential therapeutic efficacy on MIRI. Our findings provided new insights to explore the mechanism and treatments for MIRI and revealed new therapeutic targets for natural products with protective properties against MIRI.
[Quality evaluation of Aralia taibaiensis based on spectrum-activity relationship].[Pubmed:34581086]
Zhongguo Zhong Yao Za Zhi. 2021 Sep;46(18):4757-4764.
A spectrum-activity relationship is established with high performance liquid chromatography(HPLC) fingerprints and the in vitro antioxidant activity to improve the quality evaluation system of Aralia taibaiensis. The HPLC profiles of 12 batches of samples were collected, and the similarity evaluation, heat map analysis and principal component analysis were conducted for the chemometric study of the fingerprint data. Combined with grey correlation analysis, the contributions of the common peaks in the fingerprints to the antioxidant activity were clarified, and the important peaks reflecting the efficacy were identified. The results showed that 17 common peaks were found in 12 batches of A. taibaiensis samples, and 6 of them were identified as saponins. Similarity evaluation, heat map analysis and principal component analysis roughly classified the A. taibaiensis herbs into two categories, i.e.,(1) S1-S10, S12 and(2) S11. Twelve batches of samples showed different antioxidant activities in a dose-dependent manner. In particular, S9 had the strongest antioxidant activity, while S11 was the weakest in antioxidant capacity, which was basically consistent with the overall score results. The results of grey correlation analysis demonstrated that the 17 common peaks scavenged DPPH radicals in the following order: X_3>X_(17)>X_4>X_8>X_7>X_(13)>X_2>X_6>X_(11)>X_(10)>X_(16)>X_(12)>X_9>X_5>X_(14)>X_1>X_(15), and scavenged ABTS radicals in the order of X_4>X_3>X_7>X_8>X_2>X_(17)>X_(13)>X_6>X_(16)>X_(11)>X_5>X_(12)>X_(10)>X_9>X_(14)>X_1>X_(15). Among them, X_3, X_4, X_7(Araloside C), X_8 and X_(17) were the important peaks reflecting the efficacy of A. taibaiensis, which were basically consistent with those contained in the principal component 1. In this study, the correlation between the HPLC fingerprints of 12 batches of A. taibaiensis and its antioxidant activity provides a reference for the Q-marker screening and quality control of A. taibaiensis.
Araloside C attenuates atherosclerosis by modulating macrophage polarization via Sirt1-mediated autophagy.[Pubmed:31986489]
Aging (Albany NY). 2020 Jan 27;12(2):1704-1724.
Atherosclerosis-related cardiovascular disease is still the predominant cause of death worldwide. Araloside C (AsC), a natural saponin, exerts extensive anti-inflammatory properties. In this study, we explored the protective effects and mechanism of AsC on macrophage polarization in atherosclerosis in vivo and in vitro. Using a high-fat diet (HFD)-fed ApoE-/- mouse model and RAW264.7 macrophages exposed to ox-LDL, AsC was evaluated for its effects on polarization and autophagy. AsC significantly reduced the plaque area in atherosclerotic mice and lipid accumulation in ox-LDL-treated macrophages, promoted M2 phenotype macrophage polarization, increased the number of autophagosomes and modulated the expression of autophagy-related proteins. Moreover, the autophagy inhibitor 3-methyladenine and BECN1 siRNA obviously abolished the antiatherosclerotic and M2 macrophage polarization effects of AsC. Mechanistically, AsC targeted Sirt1and increased its expression, and this increase in expression was associated with increased autophagy and M2 phenotype polarization. In contrast, the effects of AsC were markedly blocked by EX527 and Sirt1 siRNA. Altogether, AsC attenuates foam cell formation and lessens atherosclerosis by modulating macrophage polarization via Sirt1-mediated autophagy.
Araloside C protects H9c2 cardiomyoblasts against oxidative stress via the modulation of mitochondrial function.[Pubmed:31387189]
Biomed Pharmacother. 2019 Sep;117:109143.
Araloside C (AsC) has potential cardioprotective properties. However, the underlying mechanism of AsC-mediated cardioprotection, especially the role of mitochondrial function, remains largely unknown. Here, we used H9c2 cardiomyocytes to study the cardioprotective mechanisms of AsC through H(2)O(2)-induced oxidative stress. Cell viability, lactate dehydrogenase release, mitochondrial functions and bioenergetics were evaluated. Western blot analysis was used to measure the protein expression levels of apoptosis and the phosphorylation of AMP-activated protein kinase (AMPK). Results revealed that AsC increased cell viability, improved mitochondrial membrane potential disruption, decreased mitochondrial reactive oxygen species level, elevated cellular ATP levels and alleviated impaired mitochondrial respiration in H(2)O(2)-induced H9c2 cardiomyoblasts injury. Furthermore, AsC modulated apoptosis-associated protein expression and AMPK pathway in H9c2 cells under oxidative stress. In conclusion, AsC potentially protects H9c2 cardiomyoblasts against oxidative stress by regulating mitochondrial function and AMPK activation. AsC may be an effective therapeutic agent for the prevention of oxidative stress in cardiac injury.
Araloside C Prevents Hypoxia/Reoxygenation-Induced Endoplasmic Reticulum Stress via Increasing Heat Shock Protein 90 in H9c2 Cardiomyocytes.[Pubmed:29719506]
Front Pharmacol. 2018 Apr 17;9:180.
Araloside C (AsC) is a cardioprotective triterpenoid compound that is mainly isolated from Aralia elata. This study aims to determine the effects of AsC on hypoxia-reoxygenation (H/R)-induced apoptosis in H9c2 cardiomyocytes and its underlying mechanisms. Results demonstrated that pretreatment with AsC (12.5 muM) for 12 h significantly suppressed the H/R injury in H9c2 cardiomyocytes, including improving cell viability, attenuating the LDH leakage and preventing cardiomyocyte apoptosis. AsC also inhibited H/R-induced ER stress by reducing the activation of ER stress pathways (PERK/eIF2alpha and ATF6), and decreasing the expression of ER stress-related apoptotic proteins (CHOP and caspase-12). Moreover, AsC greatly improved the expression level of HSP90 compared with that in the H/R group. The use of HSP90 inhibitor 17-AAG and HSP90 siRNA blocked the above suppression effect of AsC on ER stress-related apoptosis caused by H/R. Taken together, AsC could reduce H/R-induced apoptosis possibly because it attenuates ER stress-dependent apoptotic pathways by increasing HSP90 expression.
Protective effects of Araloside C against myocardial ischaemia/reperfusion injury: potential involvement of heat shock protein 90.[Pubmed:28225183]
J Cell Mol Med. 2017 Sep;21(9):1870-1880.
The present study was designed to investigate whether Araloside C, one of the major triterpenoid compounds isolated from Aralia elata known to be cardioprotective, can improve heart function following ischaemia/reperfusion (I/R) injury and elucidate its underlying mechanisms. We observed that Araloside C concentration-dependently improved cardiac function and depressed oxidative stress induced by I/R. Similar protection was confirmed in isolated cardiomyocytes characterized by maintaining Ca(2+) transients and cell shortening against I/R. Moreover, the potential targets of Araloside C were predicted using the DDI-CPI server and Discovery Studio software. Molecular docking analysis revealed that Araloside C could be stably docked into the ATP/ADP-binding domain of the heat shock protein 90 (Hsp90) protein via the formation of hydrogen bonds. The binding affinity of Hsp90 to Araloside C was detected using nanopore optical interferometry and yielded KD values of 29 muM. Araloside C also up-regulated the expression levels of Hsp90 and improved cell viability in hypoxia/reoxygenation-treated H9c2 cardiomyocytes, whereas the addition of 17-AAG, a pharmacologic inhibitor of Hsp90, attenuated Araloside C-induced cardioprotective effect. These findings reveal that Araloside C can efficiently attenuate myocardial I/R injury by reducing I/R-induced oxidative stress and [Ca(2+) ](i) overload, which was possibly related to its binding to the Hsp90 protein.
[Studies on the chemical constituents from Aralia elata].[Pubmed:1442085]
Yao Xue Xue Bao. 1992;27(7):528-32.
Eight compounds have been isolated from the root bark of Aralia elata. Their structures have been identified by means of physico-chemical and spectral analysis. They are (6'-O-palmitoyl)-beta-sitosterol-3-O-beta-D-glucoside (A5), silphiosideA (A9), chikusetusaponin Ib (A11), araloside A (A12), Araloside C (A15), acanthoside D (B1). Compound A10 is a new natural product, named as araloside A methyl-ester. 3-O-beta-D-glucopyranosyl (1----3)[beta-D-glucopyranosy (1----4)]-beta-D-glucopyranosyl-oleanolic acid-28-O-beta-D-glucopyranoside (A16) is a new compound, named as araloside G. Compounds A5, A9, A10, A11, A16, and B1 were isolated for the first time from the plant. 13C-NMR chemical shifts of compounds A9 and A15 were assigned for the first time.