CapsidiolCAS# 37208-05-2 |
Quality Control & MSDS
Number of papers citing our products
Chemical structure
3D structure
Cas No. | 37208-05-2 | SDF | Download SDF |
PubChem ID | 161937 | Appearance | Powder |
Formula | C15H24O2 | M.Wt | 236.4 |
Type of Compound | N/A | Storage | Desiccate at -20°C |
Solubility | Soluble in Chloroform,Dichloromethane,Ethyl Acetate,DMSO,Acetone,etc. | ||
Chemical Name | (1R,3R,4S,4aR,6R)-4,4a-dimethyl-6-prop-1-en-2-yl-2,3,4,5,6,7-hexahydro-1H-naphthalene-1,3-diol | ||
SMILES | CC1C(CC(C2=CCC(CC12C)C(=C)C)O)O | ||
Standard InChIKey | BXXSHQYDJWZXPB-OKNSCYNVSA-N | ||
Standard InChI | InChI=1S/C15H24O2/c1-9(2)11-5-6-12-14(17)7-13(16)10(3)15(12,4)8-11/h6,10-11,13-14,16-17H,1,5,7-8H2,2-4H3/t10-,11-,13-,14-,15-/m1/s1 | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
Capsidiol Dilution Calculator
Capsidiol Molarity Calculator
1 mg | 5 mg | 10 mg | 20 mg | 25 mg | |
1 mM | 4.2301 mL | 21.1506 mL | 42.3012 mL | 84.6024 mL | 105.753 mL |
5 mM | 0.846 mL | 4.2301 mL | 8.4602 mL | 16.9205 mL | 21.1506 mL |
10 mM | 0.423 mL | 2.1151 mL | 4.2301 mL | 8.4602 mL | 10.5753 mL |
50 mM | 0.0846 mL | 0.423 mL | 0.846 mL | 1.692 mL | 2.1151 mL |
100 mM | 0.0423 mL | 0.2115 mL | 0.423 mL | 0.846 mL | 1.0575 mL |
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations. |
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
- L-Citruline
Catalog No.:BCN2692
CAS No.:372-75-8
- SB 612111 hydrochloride
Catalog No.:BCC7714
CAS No.:371980-94-8
- ZAPA sulfate
Catalog No.:BCC6563
CAS No.:371962-01-5
- YM201636
Catalog No.:BCC4996
CAS No.:371942-69-7
- PI-103 Hydrochloride
Catalog No.:BCC1860
CAS No.:371935-79-4
- PI-103
Catalog No.:BCC1162
CAS No.:371935-74-9
- Flavoxate hydrochloride
Catalog No.:BCC5208
CAS No.:3717-88-2
- 4'-Amino-3',5'-dichloroacetophenone
Catalog No.:BCC8678
CAS No.:37148-48-4
- Murrangatin
Catalog No.:BCN5426
CAS No.:37126-91-3
- IC-87114
Catalog No.:BCC1161
CAS No.:371242-69-2
- Azlocillin sodium salt
Catalog No.:BCC4763
CAS No.:37091-65-9
- Procyanidin C1
Catalog No.:BCN6317
CAS No.:37064-30-5
- Citromycin
Catalog No.:BCN7459
CAS No.:37209-30-6
- PIK-75
Catalog No.:BCC1163
CAS No.:372196-77-5
- Sieber Linker
Catalog No.:BCC2835
CAS No.:3722-51-8
- Wilforgine
Catalog No.:BCN5427
CAS No.:37239-47-7
- Wilfortrine
Catalog No.:BCN3085
CAS No.:37239-48-8
- Wilfordine
Catalog No.:BCN3083
CAS No.:37239-51-3
- TCS OX2 29
Catalog No.:BCC7670
CAS No.:372523-75-6
- Sennoside C
Catalog No.:BCN1004
CAS No.:37271-16-2
- Sennoside D
Catalog No.:BCN1005
CAS No.:37271-17-3
- H-D-Tyr-OMe.HCl
Catalog No.:BCC3135
CAS No.:3728-20-9
- Flavokawain C
Catalog No.:BCN8456
CAS No.:37308-75-1
- 3-Quinuclidinone
Catalog No.:BCC8642
CAS No.:3731-38-2
The Full-Size ABCG Transporters Nb-ABCG1 and Nb-ABCG2 Function in Pre- and Postinvasion Defense against Phytophthora infestans in Nicotiana benthamiana.[Pubmed:27102667]
Plant Cell. 2016 May;28(5):1163-81.
The sesquiterpenoid Capsidiol is the major phytoalexin produced by Nicotiana and Capsicum species. Capsidiol is produced in plant tissues attacked by pathogens and plays a major role in postinvasion defense by inhibiting pathogen growth. Using virus-induced gene silencing-based screening, we identified two Nicotiana benthamiana (wild tobacco) genes encoding functionally redundant full-size ABCG (PDR-type) transporters, Nb-ABCG1/PDR1 and Nb-ABCG2/PDR2, which are essential for resistance to the potato late blight pathogen Phytophthora infestans Silencing of Nb-ABCG1/2 compromised secretion of Capsidiol, revealing Nb-ABCG1/2 as probable exporters of Capsidiol. Accumulation of plasma membrane-localized Nb-ABCG1 and Nb-ABCG2 was observed at the site of pathogen penetration. Silencing of EAS (encoding 5-epi-aristolochene synthase), a gene for Capsidiol biosynthesis, reduced resistance to P. infestans, but penetration by P. infestans was not affected. By contrast, Nb-ABCG1/2-silenced plants showed reduced penetration defense, indicating that Nb-ABCG1/2 are involved in preinvasion defense against P. infestans Plastidic GGPPS1 (geranylgeranyl diphosphate synthase) was also found to be required for preinvasion defense, thereby suggesting that plastid-produced diterpene(s) are the antimicrobial compounds active in preinvasion defense. These findings suggest that N. benthamiana ABCG1/2 are involved in the export of both antimicrobial diterpene(s) for preinvasion defense and Capsidiol for postinvasion defense against P. infestans.
Variation in capsidiol sensitivity between Phytophthora infestans and Phytophthora capsici is consistent with their host range.[Pubmed:25203155]
PLoS One. 2014 Sep 9;9(9):e107462.
Plants protect themselves against a variety of invading pathogenic organisms via sophisticated defence mechanisms. These responses include deployment of specialized antimicrobial compounds, such as phytoalexins, that rapidly accumulate at pathogen infection sites. However, the extent to which these compounds contribute to species-level resistance and their spectrum of action remain poorly understood. Capsidiol, a defense related phytoalexin, is produced by several solanaceous plants including pepper and tobacco during microbial attack. Interestingly, Capsidiol differentially affects growth and germination of the oomycete pathogens Phytophthora infestans and Phytophthora capsici, although the underlying molecular mechanisms remain unknown. In this study we revisited the differential effect of Capsidiol on P. infestans and P. capsici, using highly pure Capsidiol preparations obtained from yeast engineered to express the Capsidiol biosynthetic pathway. Taking advantage of transgenic Phytophthora strains expressing fluorescent markers, we developed a fluorescence-based method to determine the differential effect of Capsidiol on Phytophtora growth. Using these assays, we confirm major differences in Capsidiol sensitivity between P. infestans and P. capsici and demonstrate that Capsidiol alters the growth behaviour of both Phytophthora species. Finally, we report intraspecific variation within P. infestans isolates towards Capsidiol tolerance pointing to an arms race between the plant and the pathogens in deployment of defence related phytoalexins.