ChlorotetracyclineCAS# 57-62-5 |
2D Structure
Quality Control & MSDS
3D structure
Package In Stock
Number of papers citing our products
Cas No. | 57-62-5 | SDF | Download SDF |
PubChem ID | 54737570 | Appearance | Powder |
Formula | C22H23ClN2O8 | M.Wt | 478.9 |
Type of Compound | N/A | Storage | Desiccate at -20°C |
Solubility | Soluble in Chloroform,Dichloromethane,Ethyl Acetate,DMSO,Acetone,etc. | ||
Chemical Name | (4S,4aS,5aS,12aR)-7-chloro-4-(dimethylamino)-1,6,10,11,12a-pentahydroxy-6-methyl-3,12-dioxo-4,4a,5,5a-tetrahydrotetracene-2-carboxamide | ||
SMILES | CC1(C2CC3C(C(=O)C(=C(C3(C(=O)C2=C(C4=C(C=CC(=C41)Cl)O)O)O)O)C(=O)N)N(C)C)O | ||
Standard InChIKey | DHPRQBPJLMKORJ-BLJISXJUSA-N | ||
Standard InChI | InChI=1S/C22H23ClN2O8/c1-21(32)7-6-8-15(25(2)3)17(28)13(20(24)31)19(30)22(8,33)18(29)11(7)16(27)12-10(26)5-4-9(23)14(12)21/h4-5,7-8,15,26-27,30,32-33H,6H2,1-3H3,(H2,24,31)/t7-,8-,15-,21?,22-/m0/s1 | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
Chlorotetracycline Dilution Calculator
Chlorotetracycline Molarity Calculator
1 mg | 5 mg | 10 mg | 20 mg | 25 mg | |
1 mM | 2.0881 mL | 10.4406 mL | 20.8812 mL | 41.7624 mL | 52.203 mL |
5 mM | 0.4176 mL | 2.0881 mL | 4.1762 mL | 8.3525 mL | 10.4406 mL |
10 mM | 0.2088 mL | 1.0441 mL | 2.0881 mL | 4.1762 mL | 5.2203 mL |
50 mM | 0.0418 mL | 0.2088 mL | 0.4176 mL | 0.8352 mL | 1.0441 mL |
100 mM | 0.0209 mL | 0.1044 mL | 0.2088 mL | 0.4176 mL | 0.522 mL |
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations. |
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
- Sucrose
Catalog No.:BCN5780
CAS No.:57-50-1
- Fructose
Catalog No.:BCN4969
CAS No.:57-48-7
- Esromiotin
Catalog No.:BCC8325
CAS No.:57-47-6
- Phenytoin
Catalog No.:BCC5070
CAS No.:57-41-0
- Benactyzine hydrochloride
Catalog No.:BCC8841
CAS No.:57-37-4
- Pentobarbital sodium salt
Catalog No.:BCC6231
CAS No.:57-33-0
- Phenobarbital sodium salt
Catalog No.:BCC6230
CAS No.:57-30-7
- Strychnine
Catalog No.:BCN4978
CAS No.:57-24-9
- Vincristine
Catalog No.:BCN5411
CAS No.:57-22-7
- Urea
Catalog No.:BCC8034
CAS No.:57-13-6
- Stearic Acid
Catalog No.:BCN3820
CAS No.:57-11-4
- Palmitic acid
Catalog No.:BCN1206
CAS No.:57-10-3
- Ethinyl Estradiol
Catalog No.:BCC3777
CAS No.:57-63-6
- Probenecid
Catalog No.:BCC4832
CAS No.:57-66-9
- Sulfaguanidine
Catalog No.:BCC4727
CAS No.:57-67-0
- Sulfamethazine
Catalog No.:BCC4942
CAS No.:57-68-1
- Progesterone
Catalog No.:BCN2198
CAS No.:57-83-0
- Testosterone propionate
Catalog No.:BCC9172
CAS No.:57-85-2
- Ergosterol
Catalog No.:BCN5787
CAS No.:57-87-4
- Cholesterol
Catalog No.:BCN2199
CAS No.:57-88-5
- α-Estradiol
Catalog No.:BCC7497
CAS No.:57-91-0
- (+)-Tubocurarine chloride
Catalog No.:BCC7496
CAS No.:57-94-3
- Europine
Catalog No.:BCN1976
CAS No.:570-19-4
- Stigmasta-5,8-dien-3-ol
Catalog No.:BCN5769
CAS No.:570-72-9
Protein Arginine Deiminases (PADs): Biochemistry and Chemical Biology of Protein Citrullination.[Pubmed:30844238]
Acc Chem Res. 2019 Mar 19;52(3):818-832.
Proteins are well-known to undergo a variety of post-translational modifications (PTMs). One such PTM is citrullination, an arginine modification that is catalyzed by a group of hydrolases called protein arginine deiminases (PADs). Hundreds of proteins are known to be citrullinated and hypercitrullination is associated with autoimmune diseases including rheumatoid arthritis (RA), lupus, ulcerative colitis (UC), Alzheimer's disease, multiple sclerosis (MS), and certain cancers. In this Account, we summarize our efforts to understand the structure and mechanism of the PADs and to develop small molecule chemical probes of protein citrullination. PAD activity is highly regulated by calcium. Structural studies with PAD2 revealed that calcium-binding occurs in a stepwise fashion and induces a series of dramatic conformational changes to form a catalytically competent active site. These studies also identified the presence of a calcium-switch that controls the overall calcium-dependence and a gatekeeper residue that shields the active site in the absence of calcium. Using biochemical and site-directed mutagenesis studies, we identified the key residues (two aspartates, a cysteine, and a histidine) responsible for catalysis and proposed a general mechanism of citrullination. Although all PADs follow this mechanism, substrate binding to the thiolate or thiol form of the enzyme varies for different isozymes. Substrate-specificity studies revealed that PADs 1-4 prefer peptidyl-arginine over free arginine and certain citrullination sites on a peptide substrate. Using high-throughput screening and activity-based protein profiling (ABPP), we identified several reversible (streptomycin, minocycline, and Chlorotetracycline) and irreversible (streptonigrin, NSC 95397) PAD-inhibitors. Screening of a DNA-encoded library and lead-optimization led to the development of GSK199 and GSK484 as highly potent PAD4-selective inhibitors. Furthermore, use of an electrophilic, cysteine-targeted haloacetamidine warhead to mimic the guanidinium group in arginine afforded several mechanism-based pan-PAD-inhibitors including Cl-amidine and BB-Cl-amidine. These compounds are highly efficacious in various animal models, including those mimicking RA, UC, and lupus. Structure-activity relationships identified numerous covalent PAD-inhibitors with different bioavailability, in vivo stability, and isozyme-selectivity (PAD1-selective: D-Cl-amidine; PAD2-selective: compounds 16-20; PAD3-selective: Cl4-amidine; and PAD4-selective: TDFA). Finally, this Account describes the development of PAD-targeted and citrulline-specific chemical probes. While PAD-targeted probes were utilized for identifying off-targets and developing high-throughput inhibitor screening platforms, citrulline-specific probes enabled the proteomic identification of novel diagnostic biomarkers of hypercitrullination-related autoimmune diseases.