SulfaguanidineCAS# 57-67-0 |
- Rocilinostat (ACY-1215)
Catalog No.:BCC2144
CAS No.:1316214-52-4
- LY 294002
Catalog No.:BCC3659
CAS No.:154447-36-6
- Doxorubicin
Catalog No.:BCC2082
CAS No.:23214-92-8
- E 64d
Catalog No.:BCC1127
CAS No.:88321-09-9
Quality Control & MSDS
Number of papers citing our products
Chemical structure
3D structure
Cas No. | 57-67-0 | SDF | Download SDF |
PubChem ID | 5324 | Appearance | Powder |
Formula | C7 H10N4O2S | M.Wt | 214.24 |
Type of Compound | N/A | Storage | Desiccate at -20°C |
Solubility | DMSO : ≥ 43 mg/mL (200.71 mM) *"≥" means soluble, but saturation unknown. | ||
Chemical Name | 2-(4-aminophenyl)sulfonylguanidine | ||
SMILES | C1=CC(=CC=C1N)S(=O)(=O)N=C(N)N | ||
Standard InChIKey | BRBKOPJOKNSWSG-UHFFFAOYSA-N | ||
Standard InChI | InChI=1S/C7H10N4O2S/c8-5-1-3-6(4-2-5)14(12,13)11-7(9)10/h1-4H,8H2,(H4,9,10,11) | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
Description | Sulfaguanidine is a sulfonamide, used as an antibiotic. |
Sulfaguanidine Dilution Calculator
Sulfaguanidine Molarity Calculator
1 mg | 5 mg | 10 mg | 20 mg | 25 mg | |
1 mM | 4.6677 mL | 23.3383 mL | 46.6766 mL | 93.3532 mL | 116.6916 mL |
5 mM | 0.9335 mL | 4.6677 mL | 9.3353 mL | 18.6706 mL | 23.3383 mL |
10 mM | 0.4668 mL | 2.3338 mL | 4.6677 mL | 9.3353 mL | 11.6692 mL |
50 mM | 0.0934 mL | 0.4668 mL | 0.9335 mL | 1.8671 mL | 2.3338 mL |
100 mM | 0.0467 mL | 0.2334 mL | 0.4668 mL | 0.9335 mL | 1.1669 mL |
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations. |
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
Sulfaguanidine is a sulfonamide used as an anti-infective agent.
- Probenecid
Catalog No.:BCC4832
CAS No.:57-66-9
- Ethinyl Estradiol
Catalog No.:BCC3777
CAS No.:57-63-6
- Chlorotetracycline
Catalog No.:BCC8913
CAS No.:57-62-5
- Sucrose
Catalog No.:BCN5780
CAS No.:57-50-1
- Fructose
Catalog No.:BCN4969
CAS No.:57-48-7
- Esromiotin
Catalog No.:BCC8325
CAS No.:57-47-6
- Phenytoin
Catalog No.:BCC5070
CAS No.:57-41-0
- Benactyzine hydrochloride
Catalog No.:BCC8841
CAS No.:57-37-4
- Pentobarbital sodium salt
Catalog No.:BCC6231
CAS No.:57-33-0
- Phenobarbital sodium salt
Catalog No.:BCC6230
CAS No.:57-30-7
- Strychnine
Catalog No.:BCN4978
CAS No.:57-24-9
- Vincristine
Catalog No.:BCN5411
CAS No.:57-22-7
- Sulfamethazine
Catalog No.:BCC4942
CAS No.:57-68-1
- Progesterone
Catalog No.:BCN2198
CAS No.:57-83-0
- Testosterone propionate
Catalog No.:BCC9172
CAS No.:57-85-2
- Ergosterol
Catalog No.:BCN5787
CAS No.:57-87-4
- Cholesterol
Catalog No.:BCN2199
CAS No.:57-88-5
- α-Estradiol
Catalog No.:BCC7497
CAS No.:57-91-0
- (+)-Tubocurarine chloride
Catalog No.:BCC7496
CAS No.:57-94-3
- Europine
Catalog No.:BCN1976
CAS No.:570-19-4
- Stigmasta-5,8-dien-3-ol
Catalog No.:BCN5769
CAS No.:570-72-9
- Tricine
Catalog No.:BCN5337
CAS No.:5704-04-1
- Paprotrain
Catalog No.:BCC7978
CAS No.:57046-73-8
- Isosativenediol
Catalog No.:BCN7458
CAS No.:57079-92-2
Sulfadimethoxine and sulfaguanidine: their sorption potential on natural soils.[Pubmed:22197018]
Chemosphere. 2012 Mar;86(10):1059-65.
Sulfonamides (SAs) are one of the oldest groups of veterinary chemotherapeutic agents. As these compounds are not completely metabolized in animals, a high proportion of the native form is excreted in feces and urine. They are therefore released either directly to the environment in aquacultures and by grazing animals, or indirectly during the application of manure or slurry. Once released into the environment, SAs become distributed among various environmental compartments and may be transported to surface or ground waters. The physicochemical properties of SAs, dosage and nature of the matrix are the factors mainly responsible for their distribution in the natural environment. Although these rather polar compounds have been in use for over half a century, knowledge of their fate and behavior in soil ecosystems is still limited. Therefore, in this work we have determined the sorption potential of sulfadimethoxine and Sulfaguanidine on various natural soils. The influence on sorption of external factors, such as ionic strength and pH, were also determined. The sorption coefficients (K(d)) obtained for the sulfonamides investigated were quite low (from 0.20 to 381.17 mL g(-1) for sulfadimethoxine and from 0.39 to 35.09 mL g(-1) for Sulfaguanidine), which indicated that these substances are highly mobile and have the potential to run off into surface waters and/or infiltrate ground water. Moreover, the sorption of these pharmaceuticals was found to be influenced by OC, soil solution pH and ionic strength, with higher K(d) values for soils of higher OC and lower K(d) values with increasing pH and ionic strength.
Preparation and application of sulfaguanidine-imprinted polymer on solid-phase extraction of pharmaceuticals from water.[Pubmed:25281079]
Talanta. 2015 Jan;131:99-107.
The molecularly imprinted polymers (MIPs) with Sulfaguanidine as a template, methacrylic acid, 4-vinylpyridine, and 2-hydroxyethyl methacrylate as functional monomers, ethylene glycol dimethacrylate as a cross-linker and 2,2'-azobis-isobutyronitrile as an initiator have been prepared through the cross-link reaction of polymerization. Solid-phase extraction (SPE) procedure for the extraction of Sulfaguanidine from water samples using the prepared MIPs and non-imprinted (NIPs) was evaluated. The best MIP in combination with commercial sorbents was applied for simultaneous extraction of eight pharmaceuticals. New SPE cartridges were prepared by combination of optimal produced MIP and Oasis HLB in 6 mL of polypropilene SPE reservoir. The developed method which includes new SPE cartridge (MIPMAA-Oasis HLB, 400mg/6 mL) and thin-layer chromatography was validated. The method provides a linear response over the concentration range of 0.5-150 mug/L, depending on the pharmaceutical with the correlation coefficients>0.9843 in all cases except for norfloxacin (0.9770) and penicillin G procaine (0.9801). Also, the method has revealed low limits of detection (0.25-20 mug/L), good precision (intra and inter-day), a relative standard deviation below 15% and recoveries above 95% for all eight pharmaceuticals. The developed method by using newly prepared SPE cartridge has been successfully applied to the analysis of production wastewater samples from pharmaceutical industry.
Synthesis of novel sulfonamide analogs containing sulfamerazine/sulfaguanidine and their biological activities.[Pubmed:26327456]
J Enzyme Inhib Med Chem. 2016 Dec;31(6):1005-10.
Sulfamerazine and Sulfaguanidine are clenched with p-nitrobenzoyl chloride and the products obtained are reduced to NaxS in ethanol-water. Novel sulfonamides (6a-g and 9a-g) were synthesized by the reaction of these reduced products (4 and 8) with various sulfonyl chlorides (5a-g). The structures of these compounds were characterized using spectroscopic analysis (IR, (1)H-NMR, (13)C-NMR and HRMS) technique. Antimicrobial activity of sulfonamides (3, 4, 7, 8, 6a-g and 9a-g) was evaluated by the agar diffusion method. These compounds showed antimicrobial activity against tested microorganism strains (Gram-positive bacteria, clinic isolate and yeast and mold). Compounds 9d, 9e, 9a, 6d and 6e showed particularly antimicrobial activity against tested Gram-positive (Bacillus cereus and B. subtilis) and Gram-negative (Enterobacter aerogenes) bacteria.
Three-component synthesis and carbonic anhydrase inhibitory properties of novel octahydroacridines incorporating sulfaguanidine scaffold.[Pubmed:27237188]
J Enzyme Inhib Med Chem. 2016;31(sup2):63-69.
Novel Sulfaguanidines incorporating acridine moiety were synthesized by the reaction of cyclohexane-1,3-dione, Sulfaguanidine, and aromatic aldehydes. Synthesis of these compounds was performed in water at room temperature, and their structures were confirmed by using spectral analysis (IR, (1)H-NMR, (13)C-NMR, and HRMS). Human carbonic anhydrase isoenzymes (hCA I and II) were purified from erythrocyte cells with affinity chromatography. hCA I was purified 83.40-fold with a specific activity, 1060.9 EU mg protein(-1), and hCA II was purified 262.32-fold with a specific activity, 3336.8 EU mg protein(-1). The inhibitory effects of newly synthesized Sulfaguanidines and acetazolamide, (AAZ) as a control compound, on hydratase and esterase activities of these isoenzymes have been studied in vitro. Synthesized compounds have moderate inhibition potentials on hCA I and hCA II isoenzymes. IC50 values of compounds for esterase activity are in the range of 118.4 +/- 7.0 muM-257.5 +/- 5.2 muM for hCA I and 86.7 +/- 3.0 muM-249.4 +/- 10.2 muM for hCA II, respectively.