EPZ004777 HClDOT1L inhibitor,potent and selective CAS# 1380316-03-9 |
2D Structure
- AZ505 ditrifluoroacetate
Catalog No.:BCC4265
CAS No.:1035227-44-1
- 3-Deazaneplanocin A (DZNep) hydrochloride
Catalog No.:BCC3604
CAS No.:120964-45-6
- EPZ004777
Catalog No.:BCC2218
CAS No.:1338466-77-5
- EPZ5676
Catalog No.:BCC2215
CAS No.:1380288-87-8
- SGC 0946
Catalog No.:BCC2216
CAS No.:1561178-17-3
- Chaetocin
Catalog No.:BCC2429
CAS No.:28097-03-2
Quality Control & MSDS
3D structure
Package In Stock
Number of papers citing our products
Cas No. | 1380316-03-9 | SDF | Download SDF |
PubChem ID | 67811385 | Appearance | Powder |
Formula | C28H42ClN7O4 | M.Wt | 576.13 |
Type of Compound | N/A | Storage | Desiccate at -20°C |
Solubility | Soluble in DMSO | ||
Chemical Name | 1-[3-[[(2R,3S,4R,5R)-5-(4-aminopyrrolo[2,3-d]pyrimidin-7-yl)-3,4-dihydroxyoxolan-2-yl]methyl-propan-2-ylamino]propyl]-3-(4-tert-butylphenyl)urea;hydrochloride | ||
SMILES | CC(C)N(CCCNC(=O)NC1=CC=C(C=C1)C(C)(C)C)CC2C(C(C(O2)N3C=CC4=C3N=CN=C4N)O)O.Cl | ||
Standard InChIKey | NPEPLDAFAVXSBD-XRJUUMFPSA-N | ||
Standard InChI | InChI=1S/C28H41N7O4.ClH/c1-17(2)34(13-6-12-30-27(38)33-19-9-7-18(8-10-19)28(3,4)5)15-21-22(36)23(37)26(39-21)35-14-11-20-24(29)31-16-32-25(20)35;/h7-11,14,16-17,21-23,26,36-37H,6,12-13,15H2,1-5H3,(H2,29,31,32)(H2,30,33,38);1H/t21-,22-,23-,26-;/m1./s1 | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
Description | EPZ004777 HCl is a potent, selective inhibitor of DOT1L with an IC50 value of 0.4 nM. | |||||
Targets | DOT1L | |||||
IC50 | 0.4 nM |
EPZ004777 HCl Dilution Calculator
EPZ004777 HCl Molarity Calculator
1 mg | 5 mg | 10 mg | 20 mg | 25 mg | |
1 mM | 1.7357 mL | 8.6786 mL | 17.3572 mL | 34.7144 mL | 43.393 mL |
5 mM | 0.3471 mL | 1.7357 mL | 3.4714 mL | 6.9429 mL | 8.6786 mL |
10 mM | 0.1736 mL | 0.8679 mL | 1.7357 mL | 3.4714 mL | 4.3393 mL |
50 mM | 0.0347 mL | 0.1736 mL | 0.3471 mL | 0.6943 mL | 0.8679 mL |
100 mM | 0.0174 mL | 0.0868 mL | 0.1736 mL | 0.3471 mL | 0.4339 mL |
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations. |
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
EPZ004777 is a potent and selective inhibitor of DOT1L, a protein methyltransferase catalyzing the methylation of lysine 4 of histone H3 (H3K4), with the half maximal inhibition concentration IC50 value of 400 pM [1].
EPZ004777 has been found to concentration-dependently inhibit the H3K79 methylation in a variety of mixed lineage leukemia (MLL) cells, including MLL-rearranged acute myeloid leukemia (MOLM-13 and MLL-AF9), MLL-rearranged biphenotypic leukemia (MV4-11 and MLL-AF4) and non-MLL-rearranged T cell acute leukemia cells [1].
Additionally, EPZ004777 exhibits anti-proliferative activity against both MLL-rearranged and non-rearranged human leukemia cell lines, including RS4;11 (IC50: 6.47 μM), SEM (IC50: 1.72 μM), MV4-11 (IC50: 0.17 μM), THP-1 (IC50: 3.36 μM), MOLM-13 (IC50: 0.72 μM), KOPN-8 (IC50: 0.62 μM), REH (IC50: 13.9 μM), Kasumi-1 (IC50: 32.99 μM) and 697 (IC50: 36.57 μM) [1].
Reference
References:
[1] Daigle SR, Olhava EJ, Therkelsen CA, Majer CR, Sneeringer CJ, Song J, Johnston LD, Scott MP, Smith JJ, Xiao Y, Jin L, Kuntz KW, Chesworth R, Moyer MP, Bernt KM, Tseng JC, Kung AL, Armstrong SA, Copeland RA, Richon VM, Pollock RM. Selective killing of mixed lineage leukemia cells by a potent small-molecule DOT1L inhibitor. Cancer Cell. 2011 Jul 12;20(1):53-65. doi: 10.1016/j.ccr.2011.06.009.
- EPZ5676
Catalog No.:BCC2215
CAS No.:1380288-87-8
- KB SRC 4
Catalog No.:BCC6253
CAS No.:1380088-03-8
- BET bromodomain inhibitor
Catalog No.:BCC6426
CAS No.:1380087-89-7
- Decorticasine
Catalog No.:BCN2006
CAS No.:1380-03-6
- Limonene
Catalog No.:BCN3797
CAS No.:138-86-3
- Shikimic acid
Catalog No.:BCN6200
CAS No.:138-59-0
- Picrocrocine
Catalog No.:BCC8232
CAS No.:138-55-6
- D-(-)-Salicin
Catalog No.:BCN6298
CAS No.:138-52-3
- Mafenide
Catalog No.:BCC5237
CAS No.:138-39-6
- Atroscine
Catalog No.:BCN1941
CAS No.:138-12-5
- Mozavaptan
Catalog No.:BCC5095
CAS No.:137975-06-5
- Dehydrotolvaptan
Catalog No.:BCC8932
CAS No.:137973-76-3
- Valeriandoid B
Catalog No.:BCN6754
CAS No.:1380399-57-4
- KML 29
Catalog No.:BCC6312
CAS No.:1380424-42-9
- EHop-016
Catalog No.:BCC5022
CAS No.:1380432-32-5
- YM 750
Catalog No.:BCC7542
CAS No.:138046-43-2
- 2-(4-Hydroxy-2-oxoindolin-3-yl)acetonitrile
Catalog No.:BCN1575
CAS No.:1380540-77-1
- LDK378 dihydrochloride
Catalog No.:BCC1694
CAS No.:1380575-43-8
- G007-LK
Catalog No.:BCC6383
CAS No.:1380672-07-0
- Acetylanonamine
Catalog No.:BCN2140
CAS No.:138079-62-6
- (R,R)-THC
Catalog No.:BCC7224
CAS No.:138090-06-9
- Agomelatine
Catalog No.:BCN2165
CAS No.:138112-76-2
- 7-Methoxy-1-naphthylacetonitrile
Catalog No.:BCN2242
CAS No.:138113-08-3
- H-β-HoPhe-OH
Catalog No.:BCC3240
CAS No.:138165-77-2
Comparative plasma and tissue distribution of Sun Pharma's generic doxorubicin HCl liposome injection versus Caelyx((R)) (doxorubicin HCl liposome injection) in syngeneic fibrosarcoma-bearing BALB/c mice and Sprague-Dawley rats.[Pubmed:28349166]
Cancer Chemother Pharmacol. 2017 May;79(5):899-913.
PURPOSE: The liposomal formulation of doxorubicin [doxorubicin (DXR) hydrochloride (HCl) liposome injection, Caelyx((R))] alters the tissue distribution of DXR as compared with nonliposomal DXR, resulting in an improved benefit-risk profile. We conducted studies in murine models to compare the plasma and tissue distribution of a proposed generic DXR HCl liposome injection developed by Sun Pharmaceuticals Industries Limited (SPIL DXR HCl liposome injection) with Caelyx((R)). METHODS: The plasma and tissue distributions of the SPIL and reference DXR HCl liposome injections were compared in syngeneic fibrosarcoma-bearing BALB/c mice and Sprague-Dawley rats. Different batches and different lots of the same batch of the reference product were also compared with each other. RESULTS: The SPIL and reference DXR HCl liposome injections exhibited generally comparable plasma and tissue distribution profiles in both models. While minor differences were observed between the two products in some tissues, different batches and lots of the reference product also showed some differences in the distribution of various analytes in some tissues. The ratios of estimated free to encapsulated DXR for plasma and tissue were generally comparable between the SPIL and reference DXR HCl liposome injections in both models, indicating similar extents of absorption into the tissues and similar rates of drug release from liposomes. CONCLUSIONS: The plasma and tissue distribution profiles of the SPIL and reference DXR HCl liposome injections were shown to be generally comparable. Inconsistencies between the products observed in some tissues were thought to be due to biological variation.
A global coupled cluster potential energy surface for HCl + OH <--> Cl + H2O.[Pubmed:28327711]
Phys Chem Chem Phys. 2017 Apr 12;19(15):9770-9777.
A new and more accurate full-dimensional global potential energy surface (PES) for the ground electronic state of the ClH2O system is developed by fitting 15 777 points obtained using an explicitly correlated unrestricted coupled-cluster method with single, double, and perturbative triple excitations (UCCSD(T)-F12b). The fitting is carried out using the permutation invariant polynomial-neural network (PIP-NN) method and has an error of 6.9 meV. The new PES has a slightly lower barrier for the atmospherically important HCl + OH --> Cl + H2O reaction than the previous PES based on multi-reference configuration interaction (MRCI) calculations. As a result, it should provide a better characterization of the kinetics. Quantum dynamical calculations of reaction probabilities for both the forward and reverse reactions are performed on this new PES and compared with those on the MRCI PES. They reveal notable differences, resulting apparently from subtle differences in the PESs.
The risk reduction of recurrent periodontal pathogens of local application minocycline HCl 2% gel, used as an adjunct to scaling and root planing for chronic periodontitis treatment.[Pubmed:28331333]
Ther Clin Risk Manag. 2017 Mar 10;13:307-314.
BACKGROUND: The aim of this study was to evaluate the clinical and microbiological effects of local application minocycline HCl 2% gel, used as an adjunct to scaling and root planing (SRP) for treatment of chronic periodontitis (CP). CP is an inflammation of periodontal tissue that is caused mainly by bacterial infection, where periodontal destruction such as loss of attachment and bone destruction occurred. METHODS: A total of 81 subjects with moderate to severe periodontitis whose baseline clinical attachment loss (CAL) was >/=4 mm were randomly assigned to receive SRP alone (control group, N=39) or SRP followed by four times of local application of minocycline HCl gel (Periocline) once a week (test group, N=42). Pocket depth, CAL, and papilla bleeding index were examined at baseline, 21 days, 2, 3, and 6 months. Subgingival plaque samples were collected with sterile curettes and were analyzed by real-time polymerase chain reaction for the presence of three periodontal pathogens (Porphyromonas gingivalis [P.g.], Tannerella forsythia [T.f.], and Treponema denticola [T.d.]) at baseline, 2, 3, and 6 months. RESULTS: The number of bacteria was reduced in both groups at 2 months after baseline (SRP treatment). The changes (2-6 months) in T.d. and T.f. counts in the test group were significantly lower than those in the control group. In the control group, a significant regrowth of P.g., T.f., and T.d. was observed from 2 to 6 months and of P.g. and T.f. from 3 to 6 months. On the other hand, in the test group, the number of the three bacteria did not significantly increase during the 6-month period. CONCLUSION: The results showed that local application of minocycline, used as an adjunct to SRP, was effective for suppressing regrowth of periodontal pathogens, suggesting its risk reduction of recurrent periodontal pathogens in CP.
Duvoglustat HCl Increases Systemic and Tissue Exposure of Active Acid alpha-Glucosidase in Pompe Patients Co-administered with Alglucosidase alpha.[Pubmed:28341561]
Mol Ther. 2017 May 3;25(5):1199-1208.
Duvoglustat HCl (AT2220, 1-deoxynojirimycin) is an investigational pharmacological chaperone for the treatment of acid alpha-glucosidase (GAA) deficiency, which leads to the lysosomal storage disorder Pompe disease, which is characterized by progressive accumulation of lysosomal glycogen primarily in heart and skeletal muscles. The current standard of care is enzyme replacement therapy with recombinant human GAA (alglucosidase alfa [AA], Genzyme). Based on preclinical data, oral co-administration of duvoglustat HCl with AA increases exposure of active levels in plasma and skeletal muscles, leading to greater substrate reduction in muscle. This phase 2a study consisted of an open-label, fixed-treatment sequence that evaluated the effect of single oral doses of 50 mg, 100 mg, 250 mg, or 600 mg duvoglustat HCl on the pharmacokinetics and tissue levels of intravenously infused AA (20 mg/kg) in Pompe patients. AA alone resulted in increases in total GAA activity and protein in plasma compared to baseline. Following co-administration with duvoglustat HCl, total GAA activity and protein in plasma were further increased 1.2- to 2.8-fold compared to AA alone in all 25 Pompe patients; importantly, muscle GAA activity was increased for all co-administration treatments from day 3 biopsy specimens. No duvoglustat-related adverse events or drug-related tolerability issues were identified.