GLP-1 (9-36) amideMetabolite of GLP-1-(7-36) CAS# 161748-29-4 |
- Repaglinide
Catalog No.:BCC2504
CAS No.:135062-02-1
- Dronedarone
Catalog No.:BCN2176
CAS No.:141626-36-0
- NS309
Catalog No.:BCC1809
CAS No.:18711-16-5
- TRAM-34
Catalog No.:BCC1122
CAS No.:289905-88-0
Quality Control & MSDS
Number of papers citing our products
Chemical structure
3D structure
Cas No. | 161748-29-4 | SDF | Download SDF |
PubChem ID | 90488821 | Appearance | Powder |
Formula | C140H214N36O43 | M.Wt | 3089.44 |
Type of Compound | N/A | Storage | Desiccate at -20°C |
Synonyms | Glucagon-like peptide 1 (9-36) amide | ||
Solubility | Soluble to 2 mg/ml in 0.025% acetic acid | ||
Sequence | EGTFTSDVSSYLEGQAAKEFIAWLVKGR (Modifications: Arg-28 = C-terminal amide) | ||
SMILES | CCC(C)C(C(=O)NC(C)C(=O)NC(CC1=CNC2=CC=CC=C21)C(=O)NC(CC(C)C)C(=O)NC(C(C)C)C(=O)NC(CCCCN)C(=O)NCC(=O)NC(CCCNC(=N)N)C(=O)N)NC(=O)C(CC3=CC=CC=C3)NC(=O)C(CCC(=O)O)NC(=O)C(CCCCN)NC(=O)C(C)NC(=O)C(C)NC(=O)C(CCC(=O)N)NC(=O)CNC(=O)C(CCC(=O)O)NC(=O)C(CC(C)C)NC(=O)C(CC4=CC=C(C=C4)O)NC(=O)C(CO)NC(=O)C(CO)NC(=O)C(C(C)C)NC(=O)C(CC(=O)O)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C(CC5=CC=CC=C5)NC(=O)C(C(C)O)NC(=O)CNC(=O)C(CCC(=O)O)N | ||
Standard InChIKey | WPNGPBPCQMDAAD-WRFZDFFOSA-N | ||
Standard InChI | InChI=1S/C140H214N36O43/c1-16-72(10)112(137(217)155-75(13)118(198)162-97(59-81-61-149-85-35-24-23-34-83(81)85)127(207)164-93(55-69(4)5)128(208)173-110(70(6)7)135(215)161-87(36-25-27-51-141)120(200)151-62-103(184)156-86(115(145)195)38-29-53-148-140(146)147)175-129(209)95(56-78-30-19-17-20-31-78)165-124(204)91(46-50-108(191)192)160-123(203)88(37-26-28-52-142)158-117(197)74(12)153-116(196)73(11)154-122(202)90(44-47-102(144)183)157-104(185)63-152-121(201)89(45-49-107(189)190)159-125(205)92(54-68(2)3)163-126(206)94(58-80-39-41-82(182)42-40-80)166-132(212)99(65-177)169-134(214)101(67-179)170-136(216)111(71(8)9)174-131(211)98(60-109(193)194)167-133(213)100(66-178)171-139(219)114(77(15)181)176-130(210)96(57-79-32-21-18-22-33-79)168-138(218)113(76(14)180)172-105(186)64-150-119(199)84(143)43-48-106(187)188/h17-24,30-35,39-42,61,68-77,84,86-101,110-114,149,177-182H,16,25-29,36-38,43-60,62-67,141-143H2,1-15H3,(H2,144,183)(H2,145,195)(H,150,199)(H,151,200)(H,152,201)(H,153,196)(H,154,202)(H,155,217)(H,156,184)(H,157,185)(H,158,197)(H,159,205)(H,160,203)(H,161,215)(H,162,198)(H,163,206)(H,164,207)(H,165,204)(H,166,212)(H,167,213)(H,168,218)(H,169,214)(H,170,216)(H,171,219)(H,172,186)(H,173,208)(H,174,211)(H,175,209)(H,176,210)(H,187,188)(H,189,190)(H,191,192)(H,193,194)(H4,146,147,148)/t72-,73-,74-,75-,76+,77+,84-,86-,87-,88-,89-,90-,91-,92-,93-,94-,95-,96-,97-,98-,99-,100-,101-,110-,111-,112-,113-,114-/m0/s1 | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
Description | N-terminal truncated metabolite of glucagon-like peptide GLP-1-(7-36) formed by dipeptidyl peptidase-IV cleavage. Acts as an antagonist at the human GLP-1 receptor. Inhibits hepatic glucose production in vivo and is a weak insulinotropic agent. |
GLP-1 (9-36) amide Dilution Calculator
GLP-1 (9-36) amide Molarity Calculator
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
- Rasagiline mesylate
Catalog No.:BCN2166
CAS No.:161735-79-1
- Tebipenempivoxil
Catalog No.:BCC3861
CAS No.:161715-24-8
- Tebipenem
Catalog No.:BCC5550
CAS No.:161715-21-5
- Z-Ile-Leu-aldehyde
Catalog No.:BCC5591
CAS No.:161710-10-7
- Vincamine
Catalog No.:BCN2606
CAS No.:1617-90-9
- Lupenone
Catalog No.:BCN1717
CAS No.:1617-70-5
- Lupeol acetate
Catalog No.:BCN6893
CAS No.:1617-68-1
- Amentoflavone
Catalog No.:BCN6283
CAS No.:1617-53-4
- 2,3,8-Tri-O-methylellagic acid
Catalog No.:BCN1716
CAS No.:1617-49-8
- Caesalpine B
Catalog No.:BCN7377
CAS No.:1616757-60-8
- Caesalpine A
Catalog No.:BCN7376
CAS No.:1616757-59-5
- Dodovislactone B
Catalog No.:BCN7398
CAS No.:1616683-55-6
- 12-Oxocalanolide A
Catalog No.:BCN4699
CAS No.:161753-49-7
- Palmatrubine
Catalog No.:BCN2647
CAS No.:16176-68-4
- Esomeprazole Sodium
Catalog No.:BCC4376
CAS No.:161796-78-7
- Ethyl 2-(4-hydroxyphenyl)-4-methylthiazole-5-carboxylate
Catalog No.:BCC8969
CAS No.:161797-99-5
- Ethyl 2-(3-formyl-4-hydroxyphenyl)-4-methylthiazole-5-carboxylate
Catalog No.:BCC8968
CAS No.:161798-01-2
- Ethyl 2-(3-cyano-4-hydroxyphenyl)-4-methyl-1,3-thiazole-5-carboxylate
Catalog No.:BCC8966
CAS No.:161798-02-3
- Benzamil
Catalog No.:BCC7674
CAS No.:161804-20-2
- Amprenavir (agenerase)
Catalog No.:BCC3619
CAS No.:161814-49-9
- Talampanel(LY300164)
Catalog No.:BCC6378
CAS No.:161832-65-1
- Segetalin A
Catalog No.:BCC9246
CAS No.:161875-97-4
- Prehelminthosporol
Catalog No.:BCN7447
CAS No.:1619-13-2
- Esomeprazole Magnesium
Catalog No.:BCC5007
CAS No.:161973-10-0
New screening strategy and analysis for identification of allosteric modulators for glucagon-like peptide-1 receptor using GLP-1 (9-36) amide.[Pubmed:26341912]
Anal Biochem. 2015 Dec 15;491:23-30.
The glucagon-like peptide-1 receptor (GLP-1R) is an important physiologic regulator of insulin secretion and a major therapeutic target for diabetes mellitus. GLP-1 (7-36) amide (active form of GLP-1) is truncated to GLP-1 (9-36) amide, which has been described as a weak agonist of GLP-1R and the major form of GLP-1 in the circulation. New classes of positive allosteric modulators (PAMs) for GLP-1R may offer improved therapeutic profiles. To identify these new classes, we developed novel and robust primary and secondary high-throughput screening (HTS) systems in which PAMs were identified to enhance the GLP-1R signaling induced by GLP-1 (9-36) amide. Screening enabled identification of two compounds, HIT-465 and HIT-736, which possessed new patterns of modulation of GLP-1R. We investigated the ability of these compounds to modify GLP-1R signaling enhanced GLP-1 (9-36) amide- and/or GLP-1 (7-36) amide-mediated cyclic adenosine monophosphate (cAMP) accumulation. These compounds also had unique profiles with regard to allosteric modulation of multiple downstream signaling (PathHunter beta-arrestin signaling, PathHunter internalization signaling, microscopy-based internalization assay). We found allosteric modulation patterns to be obviously different among HIT-465, HIT-736, and Novo Nordisk compound 2. This work may enable the design of new classes of drug candidates by targeting modulation of GLP-1 (7-36) amide and GLP-1 (9-36) amide.
Pharmacokinetics and metabolism studies on the glucagon-like peptide-1 (GLP-1)-derived metabolite GLP-1(9-36)amide in male Beagle dogs.[Pubmed:24588343]
Xenobiotica. 2014 Sep;44(9):842-8.
Glucagon-like peptide-1 (GLP-1)(7-36)amide is a 30-amino acid peptide hormone that is secreted from intestinal enteroendocrine L-cells in response to nutrients. GLP-1(7-36)amide possesses potent insulinotropic actions in the augmentation of glucose-dependent insulin secretion. GLP-1(7-36)amide is rapidly metabolized by dipeptidyl peptidase-IV to yield GLP-1(9-36)amide as the principal metabolite. Contrary to the earlier notion that peptide cleavage products of native GLP-1(7-36)amide [including GLP-1(9-36)amide] are pharmacologically inactive, recent studies have demonstrated cardioprotective and insulinomimetic effects with GLP-1(9-36)amide in mice, dogs and humans. In the present work, in vitro metabolism and pharmacokinetic properties of GLP-1(9-36)amide have been characterized in dogs, since this preclinical species has been used as an animal model to demonstrate the in vivo vasodilatory and cardioprotective effects of GLP-1(9-36)amide. A liquid chromatography tandem mass spectrometry assay was developed for the quantitation of the intact peptide in hepatocyte incubations as opposed to a previously reported enzyme-linked immunosorbent assay. Although GLP-1(9-36)amide was resistant to proteolytic cleavage in dog plasma and bovine serum albumin (t1/2>240 min), the peptide was rapidly metabolized in dog hepatocytes with a t1/2 of 110 min. Metabolite identification studies in dog hepatocytes revealed a variety of N-terminus cleavage products, most of which, have also been observed in human and mouse hepatocytes. Proteolysis at the C-terminus was not observed in GLP-1(9-36)amide. Following the administration of a single intravenous bolus dose (20 microg/kg) to male Beagle dogs, GLP-1(9-36)amide exhibited a mean plasma clearance of 15 ml/min/kg and a low steady state distribution volume of 0.05 l/kg, which translated into a short elimination half life of 0.05 h. Following subcutaneous administration of GLP-1(9-36)amide at 50 microg/kg, systemic exposure of GLP-1(9-36)amide as ascertained from maximal plasma concentrations and area under the plasma concentration-time curve from zero to infinity was 44 ng/ml and 32 ng h/ml, respectively. The subcutaneous bioavailability of GLP-1(9-36)amide in dogs was 57%. Our findings raise the possibility that the cardioprotective effects of GLP-1(9-36)amide in the conscious dog model of pacing-induced heart failure might be due, at least in part, to the actions of additional downstream metabolites, which are obtained from proteolytic cleavage of the peptide backbone in the parent compound in the liver.
In vitro metabolism of the glucagon-like peptide-1 (GLP-1)-derived metabolites GLP-1(9-36)amide and GLP-1(28-36)amide in mouse and human hepatocytes.[Pubmed:24056839]
Drug Metab Dispos. 2013 Dec;41(12):2148-57.
Previous studies have revealed that the glucoincretin hormone glucagon-like peptide-1 (GLP-1)(7-36)amide is metabolized by dipeptidyl peptidase-IV (DPP-IV) and neutral endopeptidase 24.11 (NEP) to yield GLP-1(9-36)amide and GLP-1(28-36)amide, respectively, as the principal metabolites. Contrary to the previous notion that GLP-1(7-36)amide metabolites are pharmacologically inactive, recent studies have demonstrated cardioprotective and insulinomimetic effects with both GLP-1(9-36)amide and GLP-1(28-36)amide in animals and humans. In the present work, we examined the metabolic stability of the two GLP-1(7-36)amide metabolites in cryopreserved hepatocytes, which have been used to demonstrate the in vitro insulin-like effects of GLP-1(9-36)amide and GLP-1(28-36)amide on gluconeogenesis. To examine the metabolic stability of the GLP-1(7-36)amide metabolites, a liquid chromatography-tandem mass spectrometry assay was developed for the quantitation of the intact peptides in hepatocyte incubations. GLP-1(9-36)amide and GLP-1(28-36)amide were rapidly metabolized in mouse [GLP-1(9-36)amide: t(1/2) = 52 minutes; GLP-1(28-36)amide: t(1/2) = 13 minutes] and human hepatocytes [GLP-1(9-36)amide: t(1/2) = 180 minutes; GLP-1(28-36)amide: t(1/2) = 24 minutes), yielding a variety of N-terminal cleavage products that were characterized using mass spectrometry. Metabolism at the C terminus was not observed for either peptides. The DPP-IV and NEP inhibitors diprotin A and phosphoramidon, respectively, did not induce resistance in the two peptides toward proteolytic cleavage. Overall, our in vitro findings raise the intriguing possibility that the insulinomimetic effects of GLP-1(9-36)amide and GLP-1(28-36)amide on gluconeogenesis and oxidative stress might be due, at least in part, to the actions of additional downstream metabolites, which are obtained from the enzymatic cleavage of the peptide backbone in the parent compounds.
Direct effects of exendin-(9,39) and GLP-1-(9,36)amide on insulin action, beta-cell function, and glucose metabolism in nondiabetic subjects.[Pubmed:23545708]
Diabetes. 2013 Aug;62(8):2752-6.
Exendin-(9,39) is a competitive antagonist of glucagon-like peptide-1 (GLP-1) at its receptor. However, it is unclear if it has direct and unique effects of its own. We tested the hypothesis that exendin-(9,39) and GLP-1-(9,36)amide have direct effects on hormone secretion and beta-cell function as well as glucose metabolism in healthy subjects. Glucose containing [3-(3)H]glucose was infused to mimic the systemic appearance of glucose after a meal. Saline, GLP-1-(9,36)amide, or exendin-(9,39) at 30 pmol/kg/min (Ex 30) or 300 pmol/kg/min (Ex 300) were infused in random order on separate days. Integrated glucose concentrations were slightly but significantly increased by exendin-(9,39) (365 +/- 43 vs. 383 +/- 35 vs. 492 +/- 49 vs. 337 +/- 50 mmol per 6 h, saline, Ex 30, Ex 300, and GLP-1-[9,36]amide, respectively; P = 0.05). Insulin secretion did not differ among groups. However, insulin action was lowered by exendin-(9,39) (25 +/- 4 vs. 20 +/- 4 vs. 18 +/- 3 vs. 21 +/- 4 10(-4) dL/kg[min per muU/mL]; P = 0.02), resulting in a lower disposition index (DI) during exendin-(9,39) infusion (1,118 +/- 118 vs. 816 +/- 83 vs. 725 +/- 127 vs. 955 +/- 166 10(-14) dL/kg/min(2) per pmol/L; P = 0.003). Endogenous glucose production and glucose disappearance did not differ significantly among groups. We conclude that exendin-(9,39), but not GLP-1-(9,36)amide, decreases insulin action and DI in healthy humans.
GLP-1 (9-36) amide, cleavage product of GLP-1 (7-36) amide, is a glucoregulatory peptide.[Pubmed:18421270]
Obesity (Silver Spring). 2008 Jul;16(7):1501-9.
OBJECTIVE: Glucagon-like peptide-1 (GLP-1) (7-36) amide is a glucoregulatory hormone with insulinotropic and insulinomimetic actions. We determined whether the insulinomimetic effects of GLP-1 are mediated through its principal metabolite, GLP-1 (9-36) amide (GLP-1m). METHODS AND PROCEDURES: Glucose turnover during two, 2-h, euglycemic clamps was measured in 12 lean and 12 obese (BMI <25 or >30 kg/m(2)) male and female subject volunteers with normal oral glucose tolerance test. Saline or GLP-1m were infused from 0 to 60 min in each study. Additionally, seven lean and six obese subjects underwent a third clamp in which the GLP-1 receptor (GLP-1R) antagonist, exendin (9-39) amide was infused from -60 to 60 min with GLP-1m from 0 to 60 min. RESULTS: No glucose infusion was required in lean subjects to sustain euglycemia (glucose clamp) during saline or GLP-1m infusions. However, in obese subjects glucose infusion was necessary during GLP-1m infusion alone in order to compensate for a marked (>50%) inhibition of hepatic glucose production (HGP). Plasma insulin levels remained constant in lean subjects but rose significantly in obese subjects after termination of the peptide infusions. During GLP-1R blockade, infusion of glucose was immediately required upon starting GLP-1m infusions in all subjects due to a more dramatic reduction in HGP, as well as a delayed and modest insulinotropic response. DISCUSSION: We conclude that GLP-1m potently inhibits HGP and is a weak insulinotropic agent. These properties are particularly apparent and pronounced in obese but only become apparent in lean subjects during GLP-1 (7-36) receptor blockade. These previously unrecognized antidiabetogenic actions of GLP-1m may have therapeutic usefulness.
Glucagon-like peptide-1-(9-36) amide is a major metabolite of glucagon-like peptide-1-(7-36) amide after in vivo administration to dogs, and it acts as an antagonist on the pancreatic receptor.[Pubmed:9016935]
Eur J Pharmacol. 1996 Dec 30;318(2-3):429-35.
This study assesses the importance of metabolites formed following exogenous administration of glucagon-like peptide-1-(7-36) amide (GLP-1). After subcutaneous (s.c.) administration of GLP-1 to dogs the plasma immunoreactivity of GLP-1 measured by two different radioimmunoassays (RIAs) were higher than that measured by a sandwich enzyme-linked immunosorbent assay (ELISA). This discrepancy was due to the formation of the metabolites GLP-1-(9-36) amide, GLP-1-(7-35) and GLP-1-(7-34). Receptor binding studies using baby hamster kidney cells expressing the human pancreatic GLP-1 receptor showed that the affinity of GLP-1-(9-36) amide, GLP-1-(7-35) and GLP-1-(7-34) was 0.95%, 12% and 2.8%, respectively, of the affinity of GLP-1-(7-36) amide. Furthermore, GLP-1-(9-36) amide was shown to be an antagonist to adenylyl cyclase activity, whereas GLP-1-(7-35) and GLP-1-(7-34) were shown to be agonists. GLP-1-(9-36) amide was shown to be present in vivo in amounts up to 10-fold that of GLP-1-(7-36) amide. Due to its low binding affinity, this antagonistic metabolite does not seem to be able to cause physiological antagonism upon s.c. administration of the peptide.