GW 542573XSelective activator of KCa2.1 channels CAS# 660846-41-3 |
- TAK-875
Catalog No.:BCC3702
CAS No.:1000413-72-8
- GSK1292263
Catalog No.:BCC3786
CAS No.:1032823-75-8
- GPR40 Activator 1
Catalog No.:BCC4125
CAS No.:1309435-60-6
- TUG-770
Catalog No.:BCC2018
CAS No.:1402601-82-4
- GW9508
Catalog No.:BCC1102
CAS No.:885101-89-3
Quality Control & MSDS
Number of papers citing our products
Chemical structure
3D structure
Cas No. | 660846-41-3 | SDF | Download SDF |
PubChem ID | 24885053 | Appearance | Powder |
Formula | C19H28N2O5 | M.Wt | 364.44 |
Type of Compound | N/A | Storage | Desiccate at -20°C |
Solubility | Soluble to 100 mM in DMSO and to 100 mM in ethanol | ||
Chemical Name | tert-butyl 4-[(2-methoxyphenyl)carbamoyloxymethyl]piperidine-1-carboxylate | ||
SMILES | CC(C)(C)OC(=O)N1CCC(CC1)COC(=O)NC2=CC=CC=C2OC | ||
Standard InChIKey | SAXGSDIZIYFNKD-UHFFFAOYSA-N | ||
Standard InChI | InChI=1S/C19H28N2O5/c1-19(2,3)26-18(23)21-11-9-14(10-12-21)13-25-17(22)20-15-7-5-6-8-16(15)24-4/h5-8,14H,9-13H2,1-4H3,(H,20,22) | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
Description | Activator of small-conductance Ca2+-activated K+ channels (KCa2); selective for KCa2.1 (EC50 = 8.2 μM in HEK293 cells expressing hKCa2.1) with the profile hKCa2.1 > hKCa2.2 = hKCa2.3 > hKCa3.1 (IK). |
GW 542573X Dilution Calculator
GW 542573X Molarity Calculator
1 mg | 5 mg | 10 mg | 20 mg | 25 mg | |
1 mM | 2.7439 mL | 13.7197 mL | 27.4394 mL | 54.8787 mL | 68.5984 mL |
5 mM | 0.5488 mL | 2.7439 mL | 5.4879 mL | 10.9757 mL | 13.7197 mL |
10 mM | 0.2744 mL | 1.372 mL | 2.7439 mL | 5.4879 mL | 6.8598 mL |
50 mM | 0.0549 mL | 0.2744 mL | 0.5488 mL | 1.0976 mL | 1.372 mL |
100 mM | 0.0274 mL | 0.1372 mL | 0.2744 mL | 0.5488 mL | 0.686 mL |
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations. |
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
- Tigloylgomisin H
Catalog No.:BCN6927
CAS No.:66069-55-4
- Licoisoflavanone
Catalog No.:BCN6856
CAS No.:66067-26-3
- Licoisoflavone B
Catalog No.:BCN6695
CAS No.:66056-30-2
- Benzoylgomisin H
Catalog No.:BCN7242
CAS No.:66056-23-3
- Angeloylgomisin H
Catalog No.:BCN2843
CAS No.:66056-22-2
- Gomisin H
Catalog No.:BCN3902
CAS No.:66056-20-0
- Licoisoflavone A
Catalog No.:BCN2929
CAS No.:66056-19-7
- Glycyrin
Catalog No.:BCN7681
CAS No.:66056-18-6
- H-D-Arg(NO2)-OH
Catalog No.:BCC2871
CAS No.:66036-77-9
- (5Z)-7-Oxozeaenol
Catalog No.:BCC7724
CAS No.:66018-38-0
- 6-Demethoxytangeretin
Catalog No.:BCN3844
CAS No.:6601-66-7
- Cirsimaritin
Catalog No.:BCN4206
CAS No.:6601-62-3
- Nimodipine
Catalog No.:BCC3823
CAS No.:66085-59-4
- GW843682X
Catalog No.:BCC1614
CAS No.:660868-91-7
- Docosanol (Abreua)
Catalog No.:BCC3769
CAS No.:661-19-8
- Glochidone
Catalog No.:BCN4207
CAS No.:6610-55-5
- Glochidiol
Catalog No.:BCN4208
CAS No.:6610-56-6
- Pergolide mesylate
Catalog No.:BCC4464
CAS No.:66104-23-2
- 14,17-Epidioxy-28-nor-15-taraxerene-2,3-diol
Catalog No.:BCN1386
CAS No.:66107-60-6
- Levalbuterol tartrate
Catalog No.:BCC4217
CAS No.:661464-94-4
- Chromolaenide
Catalog No.:BCN7341
CAS No.:66148-25-2
- Cimicifugoside
Catalog No.:BCN2623
CAS No.:66176-93-0
- Malic acid 4-Me ester
Catalog No.:BCN4209
CAS No.:66178-02-7
- Deacetylxylopic acid
Catalog No.:BCN4210
CAS No.:6619-95-0
Accurate description of the electronic structure of organic semiconductors by GW methods.[Pubmed:28145283]
J Phys Condens Matter. 2017 Mar 15;29(10):103003.
Electronic properties associated with charged excitations, such as the ionization potential (IP), the electron affinity (EA), and the energy level alignment at interfaces, are critical parameters for the performance of organic electronic devices. To computationally design organic semiconductors and functional interfaces with tailored properties for target applications it is necessary to accurately predict these properties from first principles. Many-body perturbation theory is often used for this purpose within the GW approximation, where G is the one particle Green's function and W is the dynamically screened Coulomb interaction. Here, the formalism of GW methods at different levels of self-consistency is briefly introduced and some recent applications to organic semiconductors and interfaces are reviewed.
High average power nonlinear compression to 4 GW, sub-50 fs pulses at 2 mum wavelength.[Pubmed:28198855]
Opt Lett. 2017 Feb 15;42(4):747-750.
The combination of high-repetition-rate ultrafast thulium-doped fiber laser systems and gas-based nonlinear pulse compression in waveguides offers promising opportunities for the development of high-performance few-cycle laser sources at 2 mum wavelength. In this Letter, we report on a nonlinear pulse compression stage delivering 252 muJ, sub-50 fs-pulses at 15.4 W of average power. This performance level was enabled by actively mitigating ultrashort pulse propagation effects induced by the presence of water vapor absorptions.
Quantitative characterization of exciton from GW+Bethe-Salpeter calculation.[Pubmed:28147542]
J Chem Phys. 2017 Jan 28;146(4):044303.
We propose a method of classifying excitons into local-, Rydberg-, or charge transfer-type as a step toward enabling a data-driven material design of organic solar cells. The classification method is based on the first-principles many-body theory and improves over the conventional method based on state-by-state visualization of the one-electron wave functions. In our method, the exciton wave function is calculated within the level of the GW+Bethe-Salpeter equation, which is used to obtain two dimensionless parameters for the automatic classification. We construct criteria for exciton classification from experiences with a model molecule, dipeptide. Then we check the validity of our method using a model beta-dipeptide which has a geometry and an excitation spectrum similar to the model dipeptide. In addition, we test the effectiveness of the method using porphyrin molecules, or P1TA and P2TA, for which the conventional method is hampered by the strong state hybridization associated with excitation. We find that our method works successfully for P1TA, but the analysis of P2TA is hindered by its centrosymmetry.
GW-SEM: A Statistical Package to Conduct Genome-Wide Structural Equation Modeling.[Pubmed:28299468]
Behav Genet. 2017 May;47(3):345-359.
Improving the accuracy of phenotyping through the use of advanced psychometric tools will increase the power to find significant associations with genetic variants and expand the range of possible hypotheses that can be tested on a genome-wide scale. Multivariate methods, such as structural equation modeling (SEM), are valuable in the phenotypic analysis of psychiatric and substance use phenotypes, but these methods have not been integrated into standard genome-wide association analyses because fitting a SEM at each single nucleotide polymorphism (SNP) along the genome was hitherto considered to be too computationally demanding. By developing a method that can efficiently fit SEMs, it is possible to expand the set of models that can be tested. This is particularly necessary in psychiatric and behavioral genetics, where the statistical methods are often handicapped by phenotypes with large components of stochastic variance. Due to the enormous amount of data that genome-wide scans produce, the statistical methods used to analyze the data are relatively elementary and do not directly correspond with the rich theoretical development, and lack the potential to test more complex hypotheses about the measurement of, and interaction between, comorbid traits. In this paper, we present a method to test the association of a SNP with multiple phenotypes or a latent construct on a genome-wide basis using a diagonally weighted least squares (DWLS) estimator for four common SEMs: a one-factor model, a one-factor residuals model, a two-factor model, and a latent growth model. We demonstrate that the DWLS parameters and p-values strongly correspond with the more traditional full information maximum likelihood parameters and p-values. We also present the timing of simulations and power analyses and a comparison with and existing multivariate GWAS software package.
Selective activation of the SK1 subtype of human small-conductance Ca2+-activated K+ channels by 4-(2-methoxyphenylcarbamoyloxymethyl)-piperidine-1-carboxylic acid tert-butyl ester (GW542573X) is dependent on serine 293 in the S5 segment.[Pubmed:19515965]
Mol Pharmacol. 2009 Sep;76(3):569-78.
A new small molecule, 4-(2-methoxy-phenylcarbamoyloxymethyl)-piperidine-1-carboxylic acid tert-butyl ester (GW542573X), is presented as an activator of small-conductance Ca(2+)-activated K(+) (SK, K(Ca)2) channels and distinguished from previously published positive modulators of SK channels, such as 1-ethyl-2-benzimidazolinone (1-EBIO) and cyclohexyl-[2-(3,5-dimethylpyrazol-1-yl)-6-methyl-pyrimidin-4-yl]-amine (CyPPA), in several aspects. GW542573X is the first SK1-selective compound described: an EC(50) value of 8.2 +/- 0.8 microM (n = 6, [Ca(2+)](i) = 200 nM) was obtained from inside-out patches excised from hSK1-expressing HEK293 cells. Whole-cell experiments showed that hSK2 and hSK3 channels were more than 10 times, and hIK channels even more than 100 times, less sensitive to GW542573X. The Ca(2+)-response curve of hSK1 was left-shifted from an EC(50)(Ca(2+)) value of 410 +/- 20 nM (n = 9) to 240 +/- 10 nM (n = 5) in the presence of 10 microM GW542573X. In addition to this positive modulation, GW542573X activated SK1 in the absence of Ca(2+) and furthermore induced a 15% increase in the maximal current at saturating Ca(2+). Thus, GW542573X also acts as a genuine opener of the hSK1 channels, a mechanism of action (MOA) not previously obtained with SK channels. The differential potency on hSK1 and hSK3 enabled a chimera approach to elucidate site(s) important for this new MOA and selectivity property. A single amino acid (Ser293) located in S5 of hSK1 was essential, and substituting the corresponding Leu476 in hSK3 with serine conferred hSK1-like potency (EC(50) = 9.3 +/- 1.4 microM, n = 5). GW542573X may activate SK channels via interaction with "deep-pore" gating structures at the inner pore vestibule or the selectivity filter in contrast to 1-EBIO and CyPPA that exert positive modulation via the intracellular calmodulin binding domain.