Ligustrosidic acidCAS# 96382-89-7 |
Quality Control & MSDS
Number of papers citing our products
Chemical structure
Cas No. | 96382-89-7 | SDF | Download SDF |
PubChem ID | N/A | Appearance | Powder |
Formula | C25H30O14 | M.Wt | 554.5 |
Type of Compound | Iridoids | Storage | Desiccate at -20°C |
Solubility | Soluble in Chloroform,Dichloromethane,Ethyl Acetate,DMSO,Acetone,etc. | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
Ligustrosidic acid Dilution Calculator
Ligustrosidic acid Molarity Calculator
1 mg | 5 mg | 10 mg | 20 mg | 25 mg | |
1 mM | 1.8034 mL | 9.0171 mL | 18.0343 mL | 36.0685 mL | 45.0857 mL |
5 mM | 0.3607 mL | 1.8034 mL | 3.6069 mL | 7.2137 mL | 9.0171 mL |
10 mM | 0.1803 mL | 0.9017 mL | 1.8034 mL | 3.6069 mL | 4.5086 mL |
50 mM | 0.0361 mL | 0.1803 mL | 0.3607 mL | 0.7214 mL | 0.9017 mL |
100 mM | 0.018 mL | 0.0902 mL | 0.1803 mL | 0.3607 mL | 0.4509 mL |
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations. |
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
- 3α-Hydroxymogrol
Catalog No.:BCX1139
CAS No.:1343402-73-2
- N-methyltyramine
Catalog No.:BCX1138
CAS No.:370-98-9
- Ganosporeric acid A
Catalog No.:BCX1137
CAS No.:135357-25-4
- Avenanthramide A
Catalog No.:BCX1136
CAS No.:108605-70-5
- Avenanthramide B
Catalog No.:BCX1135
CAS No.:108605-69-2
- 3-Feruloyl-4-caffeoylquinic acid
Catalog No.:BCX1134
CAS No.:96990-65-7
- β-Sitosteryl acetate
Catalog No.:BCX1133
CAS No.:915-05-9
- Tetraacetylphytosphingosine
Catalog No.:BCX1132
CAS No.:13018-48-9
- L-Guluronic Acid Sodium Salt
Catalog No.:BCX1131
CAS No.:15769-56-9
- Ostruthine
Catalog No.:BCX1130
CAS No.:148-83-4
- Agigenin
Catalog No.:BCX1129
CAS No.:55332-76-8
- Salidroside pentaacetate
Catalog No.:BCX1128
CAS No.:39032-08-1
- Presenegenin
Catalog No.:BCX1141
CAS No.:2163-40-8
- Hydroxypropyl tetrahydropyrantriol
Catalog No.:BCX1142
CAS No.:439685-79-7
- Euphornin
Catalog No.:BCX1143
CAS No.:80454-47-3
- Reptoside
Catalog No.:BCX1144
CAS No.:53839-03-5
- Jaligonic acid
Catalog No.:BCX1145
CAS No.:51776-39-7
- 24(28)-Dehydroergosterol
Catalog No.:BCX1146
CAS No.:29560-24-5
- Eicosapentaenoic acid
Catalog No.:BCX1147
CAS No.:10417-94-4
- Toralactone
Catalog No.:BCX1148
CAS No.:41743-74-2
- Rubropunctatin
Catalog No.:BCX1149
CAS No.:514-67-0
- Methyl brevifolincarboxylate
Catalog No.:BCX1150
CAS No.:154702-76-8
- Butyl neochlorogenate
Catalog No.:BCX1151
CAS No.:409361-64-4
- Butyl chlorogenate
Catalog No.:BCX1152
CAS No.:132741-56-1
Combination of Ligustri Lucidi Fructus with Ecliptae Herba and their phytoestrogen or phytoandrogen like active pharmaceutical ingredients alleviate oestrogen/testosterone-induced benign prostatic hyperplasia through regulating steroid 5-alpha-reductase.[Pubmed:35636178]
Phytomedicine. 2022 Jul 20;102:154169.
BACKGROUND: Benign prostatic hyperplasia (BPH) is a urinary system disease with high prevalence among the middle and elder men. In BPH, proliferation of prostate cells and the imbanlance between androgen and estrogen are both important inducers. Previous studies have demonstrated that compounds from Ligustri Lucidi Fructus (LLF) and Ecliptae Herba (EH) are of phytoestrogenic or phytoandrogenic activities. The combination of LLF with EH at the ratio of 1:1 on crude drugs quantity is called Erzhi formula (EZF), which is used for in vivo research of our study. PURPOSE: This study aimed to investigate potential mechanisms of EZF and its active pharmaceutical ingredients on BPH in vitro and in vivo. METHODS: Therapeutic effects of EZF was evaluated in E(2)/testosterone (1:100) induced BPH rats model. The pathological changes of prostate, concentrations of testosterone, DHT, E(2), PSA in rats' plasma and prostate were detected. The expressions of PCNA, AR, ERalpha, ERbeta, SRD5A1, SRD5A2 were measured in BPH rat prostates and E(2)-stimulated human benign prostatic epithelial cells (BPH-1). RESULTS: EZF treatment significantly attenuated rat prostate enlargement, alleviated BPH pathological features, and decreased the expression of PCNA. The up-regulation of AR, ERalpha, SRD5A1/2 expressions, and down-regulation of ERbeta expression at prostate of rat BPH model were significantly blocked by EZF administration. The expression levels of testosterone, DHT, E(2), PSA were strongly inhibited by EZF treatment. At the cellular level, Ligustrosidic acid and echinocystic acid inhibited E(2)-induced BPH-1 cell proliferation and PCNA expressions, which were consistent with the results in vivo. And these two ingredients also down-regulated the expressions of AR, ERalpha, SRD5A1/2 and up-regulated the expression of ERbeta in BPH-1 cells. CONCLUSION: EZF, Ligustrosidic acid from LLF and echinocystic acid from EH showed inhibitive effects on BPH via down-regulating prostatic AR, ERalpha, SRD5A1/2 expressions and up-regulating ERbeta expression.
Discovery of minor quality evaluation marker compounds for Chinese patent medicine products using a two-leveled metabolomics strategy.[Pubmed:34214834]
J Chromatogr A. 2021 Aug 30;1652:462354.
Chinese patent medicines (CPMs) are popularly used in clinical practice. Though the composition is complex, the quality of CPM is usually evaluated by the contents of a few main compounds. In this study, a two-leveled metabolomics strategy was proposed to discover minor marker compounds for different CPM products. Zhenqi Fuzheng (ZQFZ) granule was studied an example, where 15 batches from 3 producers were analyzed. The samples were separated using UHPLC on an Acquity UPLC(R) HSS T3 column, and then detected using Q-Orbitrap-MS. In the first level, 1475 common peaks were extracted and 95 compounds were identified using diagnostic ions and a homemade database. In the second level, the data were subjected to a two-way hierarchical clustering analysis and screened by variable importance value. In total 14 marker compounds were discovered which were responsible for the grouping of different ZQFZ products. Echinacoside (22), oleoside (13), loganic acid (5), salidroside (7), Ligustrosidic acid (42), 6alpha-hydroxygeniposide (28), and oleoside 11-methyl ester (15) could be used to reflect the quality difference for ZQFZ granule products. The proposed strategy could also contribute to the discovery of quality control markers for other CPMs.
Seasonal variations in metabolite profiling of the fruits of Ligustrum lucidum Ait.[Pubmed:21598330]
Rapid Commun Mass Spectrom. 2011 Jun 30;25(12):1701-14.
The metabolite profiling of fruits of the herb Ligustrum lucidum Ait collected during different months has been performed using ultra-performance liquid chromatography with quadrupole time-of-flight mass spectrometry (UPLC/QTOFMS) and multivariate statistical analysis techniques. The markers such as oleuropein acid, neonuezhenide, specnuezhenide, oleuropein and Ligustrosidic acid accountable for such variations were identified through the loadings plot of principal component analysis (PCA), and the tentative identification of the markers is completed by comparing the mass spectra and retention times with those of reference compounds and/or tentatively assigned by matching empirical molecular formulae and MS/MS data with those of the known compounds published. Furthermore, one of the chemical markers, such as specnuezhenide, which is water-soluble, biologically active and also the predominant compound in this crude drug, was quantified by ultra-performance liquid chromatography coupled with a tunable UV detector (UPLC-TUV). The developed UPLC method provides good linearity (r(2)=0.9991), repeatability (RSD=2.96%), intra- and inter-day precisions (RSD=0.21%, 0.96%), with accuracies of 99.18-100.26% and a recovery of specnuezhenide of 97.57%. The fruits of L. lucidum Ait collected from August to December were tested. The results clearly show that the fruits of L. lucidum Ait harvested in October have the highest yields of specnuezhenide. It is also noted that the variations of content of specnuezhenide obtained by both methods have a strong correlation. This suggests that the newly proposed strategy is a reliable and simple method for the rapid discrimination of subtle variations, within the same plant species or strains, due to different seasonal collection times.