Home >> Research Area >>Natural Products>>Flavonoids>> Luteollin 5-glucoside

Luteollin 5-glucoside

CAS# 20344-46-1

Luteollin 5-glucoside

2D Structure

Catalog No. BCN5391----Order now to get a substantial discount!

Product Name & Size Price Stock
Luteollin 5-glucoside: 5mg $638 In Stock
Luteollin 5-glucoside: 10mg Please Inquire In Stock
Luteollin 5-glucoside: 20mg Please Inquire Please Inquire
Luteollin 5-glucoside: 50mg Please Inquire Please Inquire
Luteollin 5-glucoside: 100mg Please Inquire Please Inquire
Luteollin 5-glucoside: 200mg Please Inquire Please Inquire
Luteollin 5-glucoside: 500mg Please Inquire Please Inquire
Luteollin 5-glucoside: 1000mg Please Inquire Please Inquire

Quality Control of Luteollin 5-glucoside

3D structure

Package In Stock

Luteollin 5-glucoside

Number of papers citing our products

Chemical Properties of Luteollin 5-glucoside

Cas No. 20344-46-1 SDF Download SDF
PubChem ID 5317471 Appearance Yellow powder
Formula C21H20O11 M.Wt 448.38
Type of Compound Flavonoids Storage Desiccate at -20°C
Solubility Soluble in Chloroform,Dichloromethane,Ethyl Acetate,DMSO,Acetone,etc.
Chemical Name 2-(3,4-dihydroxyphenyl)-7-hydroxy-5-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxychromen-4-one
SMILES C1=CC(=C(C=C1C2=CC(=O)C3=C(C=C(C=C3O2)O)OC4C(C(C(C(O4)CO)O)O)O)O)O
Standard InChIKey KBGKQZVCLWKUDQ-QNDFHXLGSA-N
Standard InChI InChI=1S/C21H20O11/c22-7-16-18(27)19(28)20(29)21(32-16)31-15-5-9(23)4-14-17(15)12(26)6-13(30-14)8-1-2-10(24)11(25)3-8/h1-6,16,18-25,27-29H,7H2/t16-,18-,19+,20-,21-/m1/s1
General tips For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months.
We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months.
Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it.
About Packaging 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial.
2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial.
3. Try to avoid loss or contamination during the experiment.
Shipping Condition Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request.

Source of Luteollin 5-glucoside

The herb of Dracocephalum ruyschiana L.

Biological Activity of Luteollin 5-glucoside

Description1. Luteolin 5-O-β-glucopyranoside has antioxidant activity, it can inhibit lipid peroxidation, and has DPPH radical-scavenging activity.

Luteollin 5-glucoside Dilution Calculator

Concentration (start)
x
Volume (start)
=
Concentration (final)
x
Volume (final)
 
 
 
C1
V1
C2
V2

calculate

Luteollin 5-glucoside Molarity Calculator

Mass
=
Concentration
x
Volume
x
MW*
 
 
 
g/mol

calculate

Preparing Stock Solutions of Luteollin 5-glucoside

1 mg 5 mg 10 mg 20 mg 25 mg
1 mM 2.2303 mL 11.1513 mL 22.3025 mL 44.605 mL 55.7563 mL
5 mM 0.4461 mL 2.2303 mL 4.4605 mL 8.921 mL 11.1513 mL
10 mM 0.223 mL 1.1151 mL 2.2303 mL 4.4605 mL 5.5756 mL
50 mM 0.0446 mL 0.223 mL 0.4461 mL 0.8921 mL 1.1151 mL
100 mM 0.0223 mL 0.1115 mL 0.223 mL 0.4461 mL 0.5576 mL
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations.

Organizitions Citing Our Products recently

 
 
 

Calcutta University

University of Minnesota

University of Maryland School of Medicine

University of Illinois at Chicago

The Ohio State University

University of Zurich

Harvard University

Colorado State University

Auburn University

Yale University

Worcester Polytechnic Institute

Washington State University

Stanford University

University of Leipzig

Universidade da Beira Interior

The Institute of Cancer Research

Heidelberg University

University of Amsterdam

University of Auckland
TsingHua University
TsingHua University
The University of Michigan
The University of Michigan
Miami University
Miami University
DRURY University
DRURY University
Jilin University
Jilin University
Fudan University
Fudan University
Wuhan University
Wuhan University
Sun Yat-sen University
Sun Yat-sen University
Universite de Paris
Universite de Paris
Deemed University
Deemed University
Auckland University
Auckland University
The University of Tokyo
The University of Tokyo
Korea University
Korea University
Featured Products
New Products
 

References on Luteollin 5-glucoside

Anaerobic degradation of flavonoids by Clostridium orbiscindens.[Pubmed:14532034]

Appl Environ Microbiol. 2003 Oct;69(10):5849-54.

An anaerobic, quercetin-degrading bacterium was isolated from human feces and identified as Clostridium orbiscindens by comparative 16S rRNA gene sequence analysis. The organism was tested for its ability to transform several flavonoids. The isolated C. orbiscindens strain converted quercetin and taxifolin to 3,4-dihydroxyphenylacetic acid; luteolin and eriodictyol to 3-(3,4-dihydroxyphenyl)propionic acid; and apigenin, naringenin, and phloretin to 3-(4-hydroxyphenyl)propionic acid, respectively. Genistein and daidzein were not utilized. The glycosidic bonds of luteolin-3-glucoside, luteolin-5-glucoside, naringenin-7-neohesperidoside (naringin), quercetin-3-glucoside, quercetin-3-rutinoside (rutin), and phloretin-2'-glucoside were not cleaved. Based on the intermediates and products detected, pathways for the degradation of the flavonol quercetin and the flavones apigenin and luteolin are proposed. To investigate the numerical importance of C. orbiscindens in the human intestinal tract, a species-specific oligonucleotide probe was designed and tested for its specificity. Application of the probe to fecal samples from 10 human subjects proved the presence of C. orbiscindens in 8 out of the 10 samples tested. The numbers ranged from 1.87 x 10(8) to 2.50 x 10(9) cells g of fecal dry mass(-1), corresponding to a mean count of 4.40 x 10(8) cells g of dry feces(-1).

Comparative antioxidant activity and HPLC profiles of some selected Korean thistles.[Pubmed:18277604]

Arch Pharm Res. 2008 Jan;31(1):28-33.

As yet, no comparative analyses have been conducted regarding the comparative antioxidant activities and HPLC profiles of thistles distributed in Korea. Thus, this study was performed in order to evaluate the antioxidant potentials of seven Korean thistles: Cirsium lineare, Cirsium chanroenicum, Cirsium setidens, Cirsium japonicum var. ussuriense, Cirsium nipponicum, Cirslum pendulum and Carduus crispus, via peroxynitrite and DPPH free radical assays. Among seven Korean thistles, Carduus crispus exhibited the most significant antioxidant activity in both DPPH assay and peroxynitrite. In order to characterize the compounds contained in Korean thistles, we conducted HPLC analyses on the following ten flavonoids: luteolin-5-glucoside (1), luteolin-7-glucoside (2), apigenin-7-glucoside (3), hispidulin-7-neohesperidoside (4), apigenin-7-glucuronide (5), cirsimarin (6), pectolinarin (7), luteolin (8), apigenin (9) and acacetin (10). The results of our HPLC analyses indicated the presence of pectolinarin in the whole plants of C. setidens, C. lineare, C. nipponicum, C. pendulum, the aerial and underground parts of C. japonicum var. ussuriense, and the aerial parts of C. chanroenicum. Moreover, we were able to identify hispidulin-7-neohesperidoside and luteolin-7-glucoside in the whole plants of Carduus crispus, acacetin in the aerial parts of C. chanroenicum, cirsimarin in C. lineare.

Description

Luteolin 5-O-glucoside, a major flavonoidfrom Cirsium maackii, possesses anti-inflammatory activity. Luteolin 5-O-glucoside inhibits LPS-induced NO production and t-BHP-induced ROS generation. Luteolin 5-O-glucoside suppresses the expression of iNOS and COX-2 in macrophages.

Keywords:

Luteollin 5-glucoside,20344-46-1,Natural Products, buy Luteollin 5-glucoside , Luteollin 5-glucoside supplier , purchase Luteollin 5-glucoside , Luteollin 5-glucoside cost , Luteollin 5-glucoside manufacturer , order Luteollin 5-glucoside , high purity Luteollin 5-glucoside

Online Inquiry for:

      Fill out the information below

      • Size:Qty: - +

      * Required Fields

                                      Result: