Neuropeptide SF (mouse, rat)NPFF1 and NPFF2 agonist CAS# 230960-31-3 |
2D Structure
Quality Control & MSDS
3D structure
Package In Stock
Number of papers citing our products
Cas No. | 230960-31-3 | SDF | Download SDF |
PubChem ID | 90488868 | Appearance | Powder |
Formula | C40H65N13O10 | M.Wt | 888.03 |
Type of Compound | N/A | Storage | Desiccate at -20°C |
Solubility | Soluble to 1 mg/ml in 20% acetonitrile / water | ||
Sequence | SLAAPQRF (Modifications: Phe-8 = C-terminal amide) | ||
Chemical Name | (2S)-2-[[(2S)-1-[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-amino-3-hydroxypropanoyl]amino]-4-methylpentanoyl]amino]propanoyl]amino]propanoyl]pyrrolidine-2-carbonyl]amino]-N-[(2S)-1-[[(2S)-1-amino-1-oxo-3-phenylpropan-2-yl]amino]-5-(diaminomethylideneamino)-1-oxopentan-2-yl]pentanediamide | ||
SMILES | CC(C)CC(C(=O)NC(C)C(=O)NC(C)C(=O)N1CCCC1C(=O)NC(CCC(=O)N)C(=O)NC(CCCN=C(N)N)C(=O)NC(CC2=CC=CC=C2)C(=O)N)NC(=O)C(CO)N | ||
Standard InChIKey | OLOSAWFREOVGQW-CJKZIAQFSA-N | ||
Standard InChI | InChI=1S/C40H65N13O10/c1-21(2)18-29(52-34(58)25(41)20-54)37(61)47-22(3)33(57)48-23(4)39(63)53-17-9-13-30(53)38(62)50-27(14-15-31(42)55)36(60)49-26(12-8-16-46-40(44)45)35(59)51-28(32(43)56)19-24-10-6-5-7-11-24/h5-7,10-11,21-23,25-30,54H,8-9,12-20,41H2,1-4H3,(H2,42,55)(H2,43,56)(H,47,61)(H,48,57)(H,49,60)(H,50,62)(H,51,59)(H,52,58)(H4,44,45,46)/t22-,23-,25-,26-,27-,28-,29-,30-/m0/s1 | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
Description | Neuropeptide FF receptor agonist (Ki values are 48.4 and 12.1 nM for NPFF1 and NPFF2, respectively). Potentiates the antinociceptive action of morphine in vivo and reverses the loss of morphine potency in tolerant animals. Also increases the amplitude of the sustained current of heterologously expressed acid sensing ion channel 3 (ASIC3) (EC50 ~ 50 μM). |
Neuropeptide SF (mouse, rat) Dilution Calculator
Neuropeptide SF (mouse, rat) Molarity Calculator
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
- Chebulagic acid
Catalog No.:BCN3262
CAS No.:23094-71-5
- Corilagin
Catalog No.:BCN2322
CAS No.:23094-69-1
- 2-amino-3-(3-bromo-5-chloro-4-hydroxyphenyl)propanoic acid
Catalog No.:BCN8284
CAS No.:
- Sitosteryl palmitate
Catalog No.:BCN5078
CAS No.:2308-85-2
- Xylazine HCl
Catalog No.:BCC4341
CAS No.:23076-35-9
- 4-Amino-N-methylphthalimide
Catalog No.:BCC8686
CAS No.:2307-00-8
- PD 102807
Catalog No.:BCC7145
CAS No.:23062-91-1
- Eurycomalactone
Catalog No.:BCN3108
CAS No.:23062-24-0
- Varenicline Hydrochloride
Catalog No.:BCC4156
CAS No.:230615-23-3
- Sinensetin
Catalog No.:BCN6356
CAS No.:2306-27-6
- (-)-Sophoranone
Catalog No.:BCN7162
CAS No.:23057-55-8
- L-AP4
Catalog No.:BCC6550
CAS No.:23052-81-5
- UK 356618
Catalog No.:BCC2378
CAS No.:230961-08-7
- UK 370106
Catalog No.:BCC2379
CAS No.:230961-21-4
- Fumagillin
Catalog No.:BCC2347
CAS No.:23110-15-8
- Methylxanthoxylin
Catalog No.:BCC8212
CAS No.:23121-32-6
- Lapatinib
Catalog No.:BCC3633
CAS No.:231277-92-2
- N-[3-Chloro-4-(3-fluorobenzyloxy)phenyl]-6-iodoquinazolin-4-amine
Catalog No.:BCC9068
CAS No.:231278-20-9
- 5-(4-((3-chloro-4-((3-fluorobenzyl)oxy)phenyl)amino)quinazolin-6-yl)furan-2-carbaldehyde
Catalog No.:BCC8719
CAS No.:231278-84-5
- Mudanpioside H
Catalog No.:BCC9049
CAS No.:231280-71-0
- 6'-O-xylosyl-glycitin
Catalog No.:BCN8169
CAS No.:231288-18-9
- Tectorigenin 7-O-xylosylglucoside
Catalog No.:BCN2903
CAS No.:231288-19-0
- Heveaflavone
Catalog No.:BCN5079
CAS No.:23132-13-0
- Physalin B
Catalog No.:BCN7921
CAS No.:23133-56-4
Facilitation of spinal morphine analgesia in normal and morphine tolerant animals by neuropeptide SF and related peptides.[Pubmed:16515821]
Peptides. 2006 May;27(5):953-63.
Neuropeptide FF and related synthetic amidated peptides have been shown to elicit sustained anti-nociceptive responses and potently augment spinal anti-nociceptive actions of spinal morphine in tests of thermal and mechanical nociception. Recent studies have described the occurrence of another octapeptide, neuropeptide SF (NPSF) in the spinal cord and the cerebrospinal fluid and demonstrated its affinity for the NPFF receptors. This study examined the effects of NPSF and two putative precursor peptides, EFW-NPSF and NPAF, on the spinal actions of morphine in normal and opioid tolerant rats using the tailflick and pawpressure tests. In normal rats, NPSF demonstrated weak intrinsic activity but sub-effective doses of the peptide significantly increased the magnitude and duration of spinal morphine anti-nociception in both tests. A low-dose of NPSF also augmented the spinal actions of a delta receptor agonist, deltorphin. The morphine-potentiating effect of NPSF was shared by EFW-NPSF and the octadecapeptide NPAF. In animal rendered tolerant by continuous intrathecal infusion of morphine for 6 days, low dose NPSF itself elicited a significant anti-nociceptive response and potently increased morphine-induced response in both tests. In animals made tolerant by repeated injections of intrathecal morphine, administration of NPSF, EFW-NPSF, and NPAF with morphine reversed the loss of the anti-nociceptive effect and restored the agonist potency. The results demonstrate that in normal animals NPSF and related peptides exert strong potentiating effect on morphine anti-nociception at the spinal level and in tolerant animals these agents can reverse the loss of morphine potency.
Effects of neuropeptide SF and related peptides on acid sensing ion channel 3 and sensory neuron excitability.[Pubmed:12668052]
Neuropharmacology. 2003 Apr;44(5):662-71.
Acid sensing ion channel 3 (ASIC3) is a cation channel gated by extracellular protons. It is highly expressed in sensory neurons, including small nociceptive neurons and has been proposed to participate in pain perception associated with tissue acidosis and in mechanoperception. Neuropeptide FF (NPFF) and FMRFamide have been shown to potentiate proton-gated currents from cultured sensory neurons and acid sensing ion channel (ASIC) cDNA transfected cells. In this study, we report that another mammalian peptide neuropeptide SF (NPSF), derived from the same precursor, also considerably increases the amplitude of the sustained current of heterologously expressed ASIC3 (12-fold vs. 19- and nine-fold for FMRFamide and NPFF, respectively) with an EC(50) of approximately 50 microM. Similar effects were also observed on endogenous ASIC3-like sustained current recorded from DRG neurons although of smaller amplitudes (two-, three- and seven-fold increase for NPSF, NPFF and FMRFamide, respectively), and essentially related to a slowing down of the inactivation rate. Importantly, this modulation induced changes in neuronal excitability in response to an electrical stimulus applied during extracellular acidification. ASIC3-mediated sustained depolarisation, and its regulation by neuropeptides, could thus be important in regulating polymodal neuron excitability particularly under inflammatory conditions where the expression levels of both NPFF precursor and ASIC3 are increased.