PALATINOSECAS# 13718-94-0 |
Package In Stock
Quality Control & MSDS
Chemical structure
3D structure
Number of papers citing our products
Cas No. | 13718-94-0 | SDF | Download SDF |
PubChem ID | 4177368.0 | Appearance | Powder |
Formula | C12H22O11 | M.Wt | 342.3 |
Type of Compound | N/A | Storage | Desiccate at -20°C |
Solubility | Soluble in Chloroform,Dichloromethane,Ethyl Acetate,DMSO,Acetone,etc. | ||
Chemical Name | 1,3,4,5-tetrahydroxy-6-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyhexan-2-one | ||
SMILES | C(C1C(C(C(C(O1)OCC(C(C(C(=O)CO)O)O)O)O)O)O)O | ||
Standard InChIKey | RJPPRBMGVWEZRR-UHFFFAOYSA-N | ||
Standard InChI | InChI=1S/C12H22O11/c13-1-4(15)7(17)8(18)5(16)3-22-12-11(21)10(20)9(19)6(2-14)23-12/h5-14,16-21H,1-3H2 | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
PALATINOSE Dilution Calculator
PALATINOSE Molarity Calculator
1 mg | 5 mg | 10 mg | 20 mg | 25 mg | |
1 mM | 2.9214 mL | 14.6071 mL | 29.2141 mL | 58.4283 mL | 73.0353 mL |
5 mM | 0.5843 mL | 2.9214 mL | 5.8428 mL | 11.6857 mL | 14.6071 mL |
10 mM | 0.2921 mL | 1.4607 mL | 2.9214 mL | 5.8428 mL | 7.3035 mL |
50 mM | 0.0584 mL | 0.2921 mL | 0.5843 mL | 1.1686 mL | 1.4607 mL |
100 mM | 0.0292 mL | 0.1461 mL | 0.2921 mL | 0.5843 mL | 0.7304 mL |
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations. |
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
- Chlorine6
Catalog No.:BCX0915
CAS No.:19660-77-6
- Climbazole
Catalog No.:BCX0914
CAS No.:38083-17-9
- Oxysophoridine
Catalog No.:BCX0913
CAS No.:54809-74-4
- Graniline
Catalog No.:BCX0912
CAS No.:40737-97-1
- Dehydrocostuslactone
Catalog No.:BCX0911
CAS No.:74299-48-2
- Sodiumnewhouttuyfonate
Catalog No.:BCX0910
CAS No.:83766-73-8
- Isomaltotriose
Catalog No.:BCX0909
CAS No.:3371-50-4
- Fructo-oligosaccharideDP8/GF7
Catalog No.:BCX0908
CAS No.:62512-21-4
- 1-Kestoheptaose
Catalog No.:BCX0907
CAS No.:62512-20-3
- Maltooctaose
Catalog No.:BCX0906
CAS No.:6156-84-9
- 5-Hydroxytryptophan
Catalog No.:BCX0905
CAS No.:114-03-4
- 8-Methoxyquinoline-2-carboxylicacid
Catalog No.:BCX0904
CAS No.:21141-35-5
- 8-Methoxyquinoline-2-carbaldehyde
Catalog No.:BCX0917
CAS No.:103854-64-4
- Cinnamylacetate
Catalog No.:BCX0918
CAS No.:103-54-8
- 4-Dimethylaminobenzaldehyde
Catalog No.:BCX0919
CAS No.:100-10-7
- SalicylaldehydeAzine
Catalog No.:BCX0920
CAS No.:959-36-4
- VanillylButylEther
Catalog No.:BCX0921
CAS No.:82654-98-6
- D-Pyroglutamicacid
Catalog No.:BCX0922
CAS No.:4042-36-8
- BoeravinoneA
Catalog No.:BCX0923
CAS No.:114567-33-8
- Pseudojervine
Catalog No.:BCX0924
CAS No.:36069-05-3
- MogrosideIIA
Catalog No.:BCX0925
CAS No.:1613527-65-3
- 14-Deoxy-11-oxoandrographolide
Catalog No.:BCX0926
CAS No.:42895-57-8
- Hydroxyisogermafurenolide
Catalog No.:BCX0927
CAS No.:20267-91-8
- (+)-Pinoresinolmonomethylether4-O-β-D-glucoside
Catalog No.:BCX0928
CAS No.:74957-57-6
Effects of myofibril-palatinose conjugate as a phosphate substitute on meat emulsion quality.[Pubmed:38586345]
Heliyon. 2024 Mar 24;10(7):e28315.
The objective of this study was to investigate a replacement for phosphate in meat products. Protein structural modification was employed in this study, and grafted myofibrillar protein (MP) with PALATINOSE was added to meat emulsion without phosphate. Here, 0.15% of sodium polyphosphate (SPP) was replaced by the same (0.15%) concentration and double (0.3%) the concentration of grafted MP. Although the thermal stability was decreased, the addition of transglutaminase could increase stability. The rheological properties and pH also increased with the addition of grafted MP and transglutaminase. The addition of grafted protein could be perceived by the naked eye by observing a color difference before cooking, but it was not easy to detect after cooking. The cooking loss, emulsion stability, water holding capacity, lipid oxidation, and textural properties improved with the addition of grafted MP. However, the excessive addition of grafted MP and transglutaminase was not recommended to produce a high quality of phosphate replaced meat emulsion, and 0.15% was identified as a suitable addition ratio of grafted MP.
A novel and sensitive method for simultaneous determination of 6 low-calorie bulk sweeteners by HPLC-ELSD.[Pubmed:38244427]
J Chromatogr B Analyt Technol Biomed Life Sci. 2024 Feb 15;1234:124008.
A novel and sensitive method for the simultaneous analysis of six low-calorie bulk sweeteners (D-allulose, D-tagatose, D-mannitol, mycose, PALATINOSE, and erythritol) without derivatisation was developed using high-performance liquid chromatography-evaporative light scattering detector (HPLC-ELSD). Chromatographic separations were carried out on a Zorbax Original NH(2) (5 mum particle size, 250 mmx4.60 mm id, 70 A) column with flow rate gradient elution with acetonitrile: water (80:20, v/v). Drift tube temperature was set at 50 ℃, the nebuliser carrier gas flow rate was 1.0 mL.min(-1,) and nitrogen pressure was regulated to 276 kPa with gain:3. The regression equation showed good linearity (R(2) = 0.9985-0.9998) for all six low-calorie bulk sweeteners in the tested range (0.060-0.60 mg.mL(-1)). The limits of detection (LOD) for the six low-calorie bulk sweeteners ranged from 0.02 to 0.06 mg.mL(-1). The proposed HPLC-ELSD method was validated for the quantification of the low-calorie bulk sweeteners in 14 types of foods, and the results were satisfactory. In addition, the results showed that the number of sweeteners in each food product varied. The presence of multiple low-calorie bulk sweeteners in certain foods is interesting. This method is successful in monitoring low-calorie bulk sweeteners in food.
Two-dimensional isomer differentiation using liquid chromatography-tandem mass spectrometry with in-source, droplet-based derivatization.[Pubmed:37740330]
Analyst. 2023 Oct 5;148(20):5270-5278.
Saccharides are increasingly used as biomarkers and for therapeutic purposes. Their characterization is challenging due to their low ionization efficiencies and inherent structural heterogeneity. Here, we illustrate how the coupling of online droplet-based reaction, in a form of contained electrospray (ES) ion source, with liquid chromatography (LC) tandem mass spectrometry (MS/MS) allows the comprehensive characterization of sucrose isomers. We used the reaction between phenylboronic acid and cis-diols for on-the-fly derivatization of saccharides eluting from the LC column followed by in situ MS/MS analysis, which afforded diagnostic fragment ions that enabled differentiation of species indistinguishable by chromatography or mass spectrometry alone. For example, chromatograms differing only by 2% in retention times were flagged to be different based on incompatible MS/MS fragmentation patterns. This orthogonal LC-contained-ES-MS/MS method was applied to confirm the presence of turanose, PALATINOSE, maltulose, and maltose, which are structural isomers of sucrose, in three different honey samples. The reported workflow does not require modification to existing mass spectrometers, and the contained-ES platform itself acts both as the ion source and the reactor, all promising widespread application.