Pinosylvin

CAS# 22139-77-1

Pinosylvin

Catalog No. BCN5048----Order now to get a substantial discount!

Product Name & Size Price Stock
Pinosylvin: 5mg Please Inquire In Stock
Pinosylvin: 10mg Please Inquire In Stock
Pinosylvin: 20mg Please Inquire Please Inquire
Pinosylvin: 50mg Please Inquire Please Inquire
Pinosylvin: 100mg Please Inquire Please Inquire
Pinosylvin: 200mg Please Inquire Please Inquire
Pinosylvin: 500mg Please Inquire Please Inquire
Pinosylvin: 1000mg Please Inquire Please Inquire

Quality Control of Pinosylvin

Number of papers citing our products

Chemical structure

Pinosylvin

3D structure

Chemical Properties of Pinosylvin

Cas No. 22139-77-1 SDF Download SDF
PubChem ID 5280457 Appearance White-beige powder
Formula C14H12O2 M.Wt 212.3
Type of Compound Phenols Storage Desiccate at -20°C
Synonyms trans-3,5-Dihydroxystilbene; (E)-3,5-Stilbenediol
Solubility Soluble in methan
Chemical Name 5-[(E)-2-phenylethenyl]benzene-1,3-diol
SMILES C1=CC=C(C=C1)C=CC2=CC(=CC(=C2)O)O
Standard InChIKey YCVPRTHEGLPYPB-VOTSOKGWSA-N
Standard InChI InChI=1S/C14H12O2/c15-13-8-12(9-14(16)10-13)7-6-11-4-2-1-3-5-11/h1-10,15-16H/b7-6+
General tips For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months.
We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months.
Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it.
About Packaging 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial.
2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial.
3. Try to avoid loss or contamination during the experiment.
Shipping Condition Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request.

Source of Pinosylvin

The herbs of Pinus yunnanensis

Biological Activity of Pinosylvin

DescriptionPinosylvin is likely to act as a pro-angiogenic factor, it has anti-inflammatory activity, it may be utilized as a phytotherapic agent for the prevention of cardiovascular inflammatory diseases. Pinosylvin is an effective inhibitor of neutrophil activity, and is potentially useful as a complementary medicine in states associated with persistent inflammation. Pinosylvin has protection against oxidative stress through the induction of HO-1 in human RPE cells. Pinosylvin has inhibition against White-Rot and Brown-Rot Fungi.
TargetsAMPK | HO-1 | Caspase | MMP(e.g.TIMP) | COX | ERK | Akt | NOS | NO | IL Receptor | PKC | Antifection | Autophagy
In vitro

Pinosylvin at a high concentration induces AMPK-mediated autophagy for preventing necrosis in bovine aortic endothelial cells.[Pubmed: 25393712 ]

Can J Physiol Pharmacol. 2014 Dec;92(12):993-9.

Pinosylvin is a known functional compound of the Pinus species. Pinosylvin at low concentrations (∼ pmol/L) was reported to promote cell proliferation in endothelial cells. However, this study found that Pinosylvin at a high concentration (100 μmol/L) induces cell death in bovine aortic endothelial cells. Therefore, we examined how Pinosylvin was associated with apoptosis, autophagy, and necrosis.
METHODS AND RESULTS:
Pinosylvin at a high concentration appeared to promote caspase-3 activation, nuclear condensation, and the "flip-flop" of phosphatidylserine, indicating that Pinosylvin induces apoptosis. However, based on flow cytometry data obtained from double-staining with annexin V and propidium iodide, Pinosylvin was shown to inhibit necrosis, a postapoptotic process. Pinosylvin induced LC3 conversion from LC3-I to LC3-II and p62 degradation, which are important indicators of autophagy. In addition, AMP-activated protein kinase (AMPK) appeared to be activated by Pinosylvin, and an AMPK inhibitor was markedly shown to reduce the LC3 conversion. The inhibitory effect of an AMPK inhibitor was reversed by Pinosylvin.
CONCLUSIONS:
These results suggest that Pinosylvin induces autophagy via AMPK activation. Further, necrosis was found to be promoted by an autophagy inhibitor and then restored by Pinosylvin, while the caspase-3 inhibitor had no effect on necrosis. These findings indicate that Pinosylvin-induced autophagy blocks necrotic progress in endothelial cells.

Antimetastatic activity of pinosylvin, a natural stilbenoid, is associated with the suppression of matrix metalloproteinases.[Pubmed: 21937212 ]

J Nutr Biochem. 2012 Aug;23(8):946-52.

Metastasis is a major cause of death in cancer patients. Our previous studies showed that Pinosylvin, a naturally occurring trans-stilbenoid mainly found in Pinus species, exhibited a potential cancer chemopreventive activity and also inhibited the growth of various human cancer cell lines via the regulation of cell cycle progression.
METHODS AND RESULTS:
In this study, we further evaluated the potential antimetastatic activity of Pinosylvin in in vitro and in vivo models. Pinosylvin suppressed the expression of matrix metalloproteinase (MMP)-2, MMP-9 and membrane type 1-MMP in cultured human fibrosarcoma HT1080 cells. We also found that Pinosylvin inhibited the migration of HT1080 cells in colony dispersion and wound healing assay systems. In in vivo spontaneous pulmonary metastasis model employing intravenously injected CT26 mouse colon cancer cells in Balb/c mice, Pinosylvin (10 mg/kg body weight, intraperitoneal administration) significantly inhibited the formation of tumor nodules and tumor weight in lung tissues. The analysis of tumor in lung tissues indicated that the antimetastatic effect of Pinosylvin coincided with the down-regulation of MMP-9 and cyclooxygenase-2 expression, and phosphorylation of ERK1/2 and Akt.
CONCLUSIONS:
These data suggest that Pinosylvin might be an effective inhibitor of tumor cell metastasis via modulation of MMPs.

Efficacy of Pinosylvins against White-Rot and Brown-Rot Fungi.[Reference: WebLink]

Holzforschung, 1999, 53(5):491-7.


METHODS AND RESULTS:
Three stilbenes, Pinosylvin (PS), Pinosylvin monomethyl ether (PSM) and Pinosylvin dimethyl ether (PSD), were extracted from white spruce (Picea glauca), jack pine (Pinus banksiana), and red pine (Pinus resinosa) pine cones, and their structures were confirmed by spectroscopic and chromatographic (HPLC, GC/MS, NMR and FTIR) analysis, PS, PSM, PSD or a 1:1:1 mixture of these stilbenes at concentrations of 0.1% and 1.0% were examined for their fungal inhibitory activity by two bioassay methods. Growth of white-tot fungi (Trametes versicolor and Phanerochaete chrysosporium), and brown-rot fungi (Neolentinus lepideus, Gloeophyllum trabeum and Postia placenta) on agar media in the presence of each of the stilbenes or a 1:1:1 mixture inhibited growth of white-rot fungi, but slightly stimulated growth of brown-rot fungi. Soil-block assays. conditions more representative of those found in nature did not correlate with those from the screening on agar media.
CONCLUSIONS:
PS, PSM, PSD or a 1:1:1 mixture of the three compound\ at concentrations of 0.1 % and 1.0% did not impart any significant decay resistance to white-rot fungi inoculated on a hardwood (Red maple). However under the same conditions, decay reststance was observed against brown-rot fungi on a softwood (Southern yellow pine). It appears that stilbenes at least partially contribute to wood decay resistance against brown-rot fungi.

In vivo

Pinosylvin and Monomethylpinosylvin, Constituents of an Extract from the Knot of Pinus sylvestris, Reduce Inflammatory Gene Expression and Inflammatory Responses in Vivo.[Pubmed: 25763469]

J Agric Food Chem. 2015 Apr 8;63(13):3445-53.

Scots pine (Pinus sylvestris) is known to be rich in phenolic compounds, which may have anti-inflammatory properties.
METHODS AND RESULTS:
The present study investigated the anti-inflammatory effects of a knot extract from P. sylvestris and two stilbenes, Pinosylvin and monomethylPinosylvin, isolated from the extract. Inflammation is characterized by increased release of pro-inflammatory and regulatory mediators including nitric oxide (NO) produced by the inducible nitric oxide synthase (iNOS) pathway. The knot extract (EC50 values of 3 and 3 μg/mL) as well as two of its constituents, Pinosylvin (EC50 values of 13 and 15 μM) and monomethylPinosylvin (EC50 values of 8 and 12 μM), reduced NO production and iNOS expression in activated macrophages. They also inhibited the production of inflammatory cytokines IL-6 and MCP-1. More importantly, Pinosylvin and monomethylPinosylvin exerted a clear anti-inflammatory effect (80% inhibition at the dose of 100 mg/kg) in the standard in vivo model, carrageenan-induced paw inflammation in the mouse, with the effect being comparable to that of a known iNOS inhibitor L-NIL.
CONCLUSIONS:
The results reveal that the Scots pine stilbenes Pinosylvin and monomethylPinosylvin are potential anti-inflammatory compounds.

Protocol of Pinosylvin

Kinase Assay

Pinosylvin induces cell survival, migration and anti-adhesiveness of endothelial cells via nitric oxide production.[Pubmed: 22736379]

Phytother Res. 2013 Apr;27(4):610-7.

Pinosylvin is a phenolic compound mainly found in the Pinus species. To determine the vascular functions of Pinosylvin, we first examined both proliferation and apoptosis of bovine aortic endothelial cells (BAECs) in the presence of Pinosylvin.
METHODS AND RESULTS:
When BAECs were treated with Pinosylvin, etoposide- or starvation-induced apoptosis was shown to be significantly reduced. The anti-apoptotic effect of Pinosylvin was mediated by inhibition of caspase-3. Moreover, Pinosylvin was shown to activate endothelial nitric oxide synthetase (eNOS). At 1 pM, Pinosylvin appeared to have a cell-proliferative effect in the endothelial cell. The Pinosylvin-induced cell proliferation was declined by treatment with L-NAME, an eNOS inhibitor. Then, we found that Pinosylvin had a stimulatory effect on cell migration and tube formation. These stimulatory effects suggest that Pinosylvin is likely to act as a pro-angiogenic factor. Yet another effect of Pinosylvin was inhibition of lipopolysaccharide-induced THP-1 cell adhesion to endothelial cells.
CONCLUSIONS:
Altogether, we propose that Pinosylvin may be utilized as a phytotherapic agent for the prevention of cardiovascular inflammatory diseases.

Animal Research

The natural stilbenoid pinosylvin and activated neutrophils: effects on oxidative burst, protein kinase C, apoptosis and efficiency in adjuvant arthritis.[Pubmed: 22842731 ]

Acta Pharmacol Sin. 2012 Oct;33(10):1285-92.

To investigate the effects of the naturally occurring stilbenoid Pinosylvin on neutrophil activity in vitro and in experimental arthritis, and to examine whether protein kinase C (PKC) activation served as an assumed target of Pinosylvin action.
METHODS AND RESULTS:
Fresh human blood neutrophils were isolated. The oxidative burst of neutrophils was evaluated on the basis of enhanced chemiluminescence. Neutrophil viability was evaluated with flow cytometry, and PKC phosphorylation was assessed by Western blotting analysis. Adjuvant arthritis was induced in Lewis rats with heat-killed Mycobacterium butyricum, and the animals were administered with Pinosylvin (30 mg/kg, po) daily for 21 d after arthritis induction. In isolated human neutrophils, Pinosylvin (10 and 100 μmol/L) significantly decreased the formation of oxidants, both extra- and intracellularly, and effectively inhibited PKC activation stimulated by phorbol myristate acetate (0.05 μmol/L). The inhibition was not due to neutrophil damage or increased apoptosis. In arthritic rats, the number of neutrophils in blood was dramatically increased, and whole blood chemiluminescence (spontaneous and PMA-stimulated) was markedly enhanced. Pinosylvin administration decreased the number of neutrophils (from 69 671 ± 5588/μL to 51 293 ± 3947/μL, P=0.0198) and significantly reduced the amount of reactive oxygen species in blood.
CONCLUSIONS:
Pinosylvin is an effective inhibitor of neutrophil activity, and is potentially useful as a complementary medicine in states associated with persistent inflammation.

Pinosylvin Dilution Calculator

Concentration (start)
x
Volume (start)
=
Concentration (final)
x
Volume (final)
 
 
 
C1
V1
C2
V2

calculate

Pinosylvin Molarity Calculator

Mass
=
Concentration
x
Volume
x
MW*
 
 
 
g/mol

calculate

Preparing Stock Solutions of Pinosylvin

1 mg 5 mg 10 mg 20 mg 25 mg
1 mM 4.7103 mL 23.5516 mL 47.1032 mL 94.2063 mL 117.7579 mL
5 mM 0.9421 mL 4.7103 mL 9.4206 mL 18.8413 mL 23.5516 mL
10 mM 0.471 mL 2.3552 mL 4.7103 mL 9.4206 mL 11.7758 mL
50 mM 0.0942 mL 0.471 mL 0.9421 mL 1.8841 mL 2.3552 mL
100 mM 0.0471 mL 0.2355 mL 0.471 mL 0.9421 mL 1.1776 mL
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations.

Organizitions Citing Our Products recently

 
 
 

Calcutta University

University of Minnesota

University of Maryland School of Medicine

University of Illinois at Chicago

The Ohio State University

University of Zurich

Harvard University

Colorado State University

Auburn University

Yale University

Worcester Polytechnic Institute

Washington State University

Stanford University

University of Leipzig

Universidade da Beira Interior

The Institute of Cancer Research

Heidelberg University

University of Amsterdam

University of Auckland
TsingHua University
TsingHua University
The University of Michigan
The University of Michigan
Miami University
Miami University
DRURY University
DRURY University
Jilin University
Jilin University
Fudan University
Fudan University
Wuhan University
Wuhan University
Sun Yat-sen University
Sun Yat-sen University
Universite de Paris
Universite de Paris
Deemed University
Deemed University
Auckland University
Auckland University
The University of Tokyo
The University of Tokyo
Korea University
Korea University
Featured Products
New Products
 

References on Pinosylvin

The natural stilbenoid pinosylvin and activated neutrophils: effects on oxidative burst, protein kinase C, apoptosis and efficiency in adjuvant arthritis.[Pubmed:22842731]

Acta Pharmacol Sin. 2012 Oct;33(10):1285-92.

AIM: To investigate the effects of the naturally occurring stilbenoid Pinosylvin on neutrophil activity in vitro and in experimental arthritis, and to examine whether protein kinase C (PKC) activation served as an assumed target of Pinosylvin action. METHODS: Fresh human blood neutrophils were isolated. The oxidative burst of neutrophils was evaluated on the basis of enhanced chemiluminescence. Neutrophil viability was evaluated with flow cytometry, and PKC phosphorylation was assessed by Western blotting analysis. Adjuvant arthritis was induced in Lewis rats with heat-killed Mycobacterium butyricum, and the animals were administered with Pinosylvin (30 mg/kg, po) daily for 21 d after arthritis induction. RESULTS: In isolated human neutrophils, Pinosylvin (10 and 100 mumol/L) significantly decreased the formation of oxidants, both extra- and intracellularly, and effectively inhibited PKC activation stimulated by phorbol myristate acetate (0.05 mumol/L). The inhibition was not due to neutrophil damage or increased apoptosis. In arthritic rats, the number of neutrophils in blood was dramatically increased, and whole blood chemiluminescence (spontaneous and PMA-stimulated) was markedly enhanced. Pinosylvin administration decreased the number of neutrophils (from 69 671 +/- 5588/muL to 51 293 +/- 3947/muL, P=0.0198) and significantly reduced the amount of reactive oxygen species in blood. CONCLUSION: Pinosylvin is an effective inhibitor of neutrophil activity, and is potentially useful as a complementary medicine in states associated with persistent inflammation.

Pinosylvin at a high concentration induces AMPK-mediated autophagy for preventing necrosis in bovine aortic endothelial cells.[Pubmed:25393712]

Can J Physiol Pharmacol. 2014 Dec;92(12):993-9.

Pinosylvin is a known functional compound of the Pinus species. Pinosylvin at low concentrations ( approximately pmol/L) was reported to promote cell proliferation in endothelial cells. However, this study found that Pinosylvin at a high concentration (100 mumol/L) induces cell death in bovine aortic endothelial cells. Therefore, we examined how Pinosylvin was associated with apoptosis, autophagy, and necrosis. Pinosylvin at a high concentration appeared to promote caspase-3 activation, nuclear condensation, and the "flip-flop" of phosphatidylserine, indicating that Pinosylvin induces apoptosis. However, based on flow cytometry data obtained from double-staining with annexin V and propidium iodide, Pinosylvin was shown to inhibit necrosis, a postapoptotic process. Pinosylvin induced LC3 conversion from LC3-I to LC3-II and p62 degradation, which are important indicators of autophagy. In addition, AMP-activated protein kinase (AMPK) appeared to be activated by Pinosylvin, and an AMPK inhibitor was markedly shown to reduce the LC3 conversion. The inhibitory effect of an AMPK inhibitor was reversed by Pinosylvin. These results suggest that Pinosylvin induces autophagy via AMPK activation. Further, necrosis was found to be promoted by an autophagy inhibitor and then restored by Pinosylvin, while the caspase-3 inhibitor had no effect on necrosis. These findings indicate that Pinosylvin-induced autophagy blocks necrotic progress in endothelial cells.

Antimetastatic activity of pinosylvin, a natural stilbenoid, is associated with the suppression of matrix metalloproteinases.[Pubmed:21937212]

J Nutr Biochem. 2012 Aug;23(8):946-52.

Metastasis is a major cause of death in cancer patients. Our previous studies showed that Pinosylvin, a naturally occurring trans-stilbenoid mainly found in Pinus species, exhibited a potential cancer chemopreventive activity and also inhibited the growth of various human cancer cell lines via the regulation of cell cycle progression. In this study, we further evaluated the potential antimetastatic activity of Pinosylvin in in vitro and in vivo models. Pinosylvin suppressed the expression of matrix metalloproteinase (MMP)-2, MMP-9 and membrane type 1-MMP in cultured human fibrosarcoma HT1080 cells. We also found that Pinosylvin inhibited the migration of HT1080 cells in colony dispersion and wound healing assay systems. In in vivo spontaneous pulmonary metastasis model employing intravenously injected CT26 mouse colon cancer cells in Balb/c mice, Pinosylvin (10 mg/kg body weight, intraperitoneal administration) significantly inhibited the formation of tumor nodules and tumor weight in lung tissues. The analysis of tumor in lung tissues indicated that the antimetastatic effect of Pinosylvin coincided with the down-regulation of MMP-9 and cyclooxygenase-2 expression, and phosphorylation of ERK1/2 and Akt. These data suggest that Pinosylvin might be an effective inhibitor of tumor cell metastasis via modulation of MMPs.

Pinosylvin and monomethylpinosylvin, constituents of an extract from the knot of Pinus sylvestris, reduce inflammatory gene expression and inflammatory responses in vivo.[Pubmed:25763469]

J Agric Food Chem. 2015 Apr 8;63(13):3445-53.

Scots pine (Pinus sylvestris) is known to be rich in phenolic compounds, which may have anti-inflammatory properties. The present study investigated the anti-inflammatory effects of a knot extract from P. sylvestris and two stilbenes, Pinosylvin and monomethylPinosylvin, isolated from the extract. Inflammation is characterized by increased release of pro-inflammatory and regulatory mediators including nitric oxide (NO) produced by the inducible nitric oxide synthase (iNOS) pathway. The knot extract (EC50 values of 3 and 3 mug/mL) as well as two of its constituents, Pinosylvin (EC50 values of 13 and 15 muM) and monomethylPinosylvin (EC50 values of 8 and 12 muM), reduced NO production and iNOS expression in activated macrophages. They also inhibited the production of inflammatory cytokines IL-6 and MCP-1. More importantly, Pinosylvin and monomethylPinosylvin exerted a clear anti-inflammatory effect (80% inhibition at the dose of 100 mg/kg) in the standard in vivo model, carrageenan-induced paw inflammation in the mouse, with the effect being comparable to that of a known iNOS inhibitor L-NIL. The results reveal that the Scots pine stilbenes Pinosylvin and monomethylPinosylvin are potential anti-inflammatory compounds.

Pinosylvin induces cell survival, migration and anti-adhesiveness of endothelial cells via nitric oxide production.[Pubmed:22736379]

Phytother Res. 2013 Apr;27(4):610-7.

Pinosylvin is a phenolic compound mainly found in the Pinus species. To determine the vascular functions of Pinosylvin, we first examined both proliferation and apoptosis of bovine aortic endothelial cells (BAECs) in the presence of Pinosylvin. When BAECs were treated with Pinosylvin, etoposide- or starvation-induced apoptosis was shown to be significantly reduced. The anti-apoptotic effect of Pinosylvin was mediated by inhibition of caspase-3. Moreover, Pinosylvin was shown to activate endothelial nitric oxide synthetase (eNOS). At 1 pM, Pinosylvin appeared to have a cell-proliferative effect in the endothelial cell. The Pinosylvin-induced cell proliferation was declined by treatment with L-NAME, an eNOS inhibitor. Then, we found that Pinosylvin had a stimulatory effect on cell migration and tube formation. These stimulatory effects suggest that Pinosylvin is likely to act as a pro-angiogenic factor. Yet another effect of Pinosylvin was inhibition of lipopolysaccharide-induced THP-1 cell adhesion to endothelial cells. Altogether, we propose that Pinosylvin may be utilized as a phytotherapic agent for the prevention of cardiovascular inflammatory diseases.

Description

Pinosylvin is a pre-infectious stilbenoid toxin isolated from the heartwood of Pinus spp, has anti-bacterial activities. Pinosylvin is a resveratrol analogue, can induce cell apoptosis and autophapy in leukemia cells.

Keywords:

Pinosylvin,22139-77-1,trans-3,5-Dihydroxystilbene; (E)-3,5-Stilbenediol,Natural Products, buy Pinosylvin , Pinosylvin supplier , purchase Pinosylvin , Pinosylvin cost , Pinosylvin manufacturer , order Pinosylvin , high purity Pinosylvin

Online Inquiry for:

      Fill out the information below

      • Size:Qty: - +

      * Required Fields

                                      Result: