SC 51322Potent EP1 receptor antagonist CAS# 146032-79-3 |
- Verteporfin
Catalog No.:BCC3690
CAS No.:129497-78-5
- Methylcobalamin
Catalog No.:BCC5188
CAS No.:13422-55-4
- Miglustat hydrochloride
Catalog No.:BCC5186
CAS No.:210110-90-0
- Miglustat
Catalog No.:BCC5187
CAS No.:72599-27-0
- Grape Seed Extract
Catalog No.:BCC5317
CAS No.:84929-27-1
Quality Control & MSDS
Number of papers citing our products
Chemical structure
3D structure
Cas No. | 146032-79-3 | SDF | Download SDF |
PubChem ID | 9933831 | Appearance | Powder |
Formula | C22H20ClN3O4S | M.Wt | 457.93 |
Type of Compound | N/A | Storage | Desiccate at -20°C |
Solubility | Soluble to 100 mM in DMSO and to 25 mM in ethanol | ||
Chemical Name | 3-chloro-N'-[3-(furan-2-ylmethylsulfanyl)propanoyl]-6H-benzo[b][1,4]benzoxazepine-5-carbohydrazide | ||
SMILES | C1C2=CC=CC=C2OC3=C(N1C(=O)NNC(=O)CCSCC4=CC=CO4)C=C(C=C3)Cl | ||
Standard InChIKey | CQBVTZDISUKDSX-UHFFFAOYSA-N | ||
Standard InChI | InChI=1S/C22H20ClN3O4S/c23-16-7-8-20-18(12-16)26(13-15-4-1-2-6-19(15)30-20)22(28)25-24-21(27)9-11-31-14-17-5-3-10-29-17/h1-8,10,12H,9,11,13-14H2,(H,24,27)(H,25,28) | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
Description | Potent EP1 prostanoid receptor antagonist (Ki = 13.8 nM). Displays analgesic properties in vivo. |
SC 51322 Dilution Calculator
SC 51322 Molarity Calculator
1 mg | 5 mg | 10 mg | 20 mg | 25 mg | |
1 mM | 2.1837 mL | 10.9187 mL | 21.8374 mL | 43.6748 mL | 54.5935 mL |
5 mM | 0.4367 mL | 2.1837 mL | 4.3675 mL | 8.735 mL | 10.9187 mL |
10 mM | 0.2184 mL | 1.0919 mL | 2.1837 mL | 4.3675 mL | 5.4593 mL |
50 mM | 0.0437 mL | 0.2184 mL | 0.4367 mL | 0.8735 mL | 1.0919 mL |
100 mM | 0.0218 mL | 0.1092 mL | 0.2184 mL | 0.4367 mL | 0.5459 mL |
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations. |
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
- Tropine nonanoate
Catalog No.:BCN1925
CAS No.:146018-90-8
- 2-Fluoroadenosine
Catalog No.:BCC8576
CAS No.:146-78-1
- 2-Chloroadenosine
Catalog No.:BCC7575
CAS No.:146-77-0
- Yohimbine
Catalog No.:BCN2293
CAS No.:146-48-5
- Cycloart-23-ene-3,25-diol
Catalog No.:BCN2640
CAS No.:14599-48-5
- Jasminoid A
Catalog No.:BCN7605
CAS No.:1459784-57-6
- Laccaic acid E
Catalog No.:BCN1807
CAS No.:14597-16-1
- N,N,N-Trimethyl-2-aminoethylphosphonate
Catalog No.:BCN1560
CAS No.:14596-57-7
- 2-Dimethylaminoethylphosphonic acid
Catalog No.:BCN1764
CAS No.:14596-56-6
- 2-(Methylamino)ethylphosphonic acid
Catalog No.:BCN1763
CAS No.:14596-55-5
- 3-Amino-3-phenyl-1-propanol
Catalog No.:BCC8608
CAS No.:14593-04-5
- 7,8,9,9-Tetradehydroisolariciresinol
Catalog No.:BCN1649
CAS No.:145918-59-8
- SC 51089
Catalog No.:BCC7773
CAS No.:146033-02-5
- Tauroursodeoxycholic acid
Catalog No.:BCN6953
CAS No.:14605-22-2
- MSDC-0160
Catalog No.:BCC5343
CAS No.:146062-49-9
- Dihydromarein
Catalog No.:BCN8406
CAS No.:
- Pulchinenoside E1
Catalog No.:BCN8185
CAS No.:146100-02-9
- Z-Arg(Z)2-OH
Catalog No.:BCC3574
CAS No.:14611-34-8
- R-(-)-Deprenyl hydrochloride
Catalog No.:BCC5196
CAS No.:14611-52-0
- Chlorajapolide F
Catalog No.:BCN6425
CAS No.:1461760-59-7
- N-Methyllidocaine iodide
Catalog No.:BCC6905
CAS No.:1462-71-1
- SR 48692
Catalog No.:BCC7763
CAS No.:146362-70-1
- Desmethylrocaglamide
Catalog No.:BCN7735
CAS No.:146408-78-8
- Lactose
Catalog No.:BCN8387
CAS No.:14641-93-1
Solid-State NMR Spectroscopy Proves the Presence of Penta-coordinated Sc Sites in MIL-100(Sc).[Pubmed:28379610]
Chemistry. 2017 Jul 18;23(40):9525-9534.
Advanced solid-state NMR methods and first-principles calculations demonstrate for the first time the formation of penta-coordinated scandium sites. These coordinatively unsaturated sites were shown during the thermal activation of scandium-based metal-organic frameworks (MOFs). A (45) Sc NMR experiment allows their specific observation in activated Sc3 BTB2 (H3 BTB=1,3,5-tris(4-carboxyphenyl)benzene) and MIL-100(Sc) MOFs. The assignment of the ScO5 groups is supported by the DFT calculations of NMR parameters. The presence of ScO5 Lewis acid sites in MIL-100(Sc) explains furthermore its catalytic activity. The first NMR experiment to probe (13) C-(45) Sc distances is also introduced. This advanced solid-state NMR pulse sequence allows the demonstration of the shrinkage of the MIL-100(Sc) network when the activation temperature is raised.
SC-CO2-assisted process for a high energy density aerogel supercapacitor: the effect of GO loading.[Pubmed:28319034]
Nanotechnology. 2017 May 19;28(20):204001.
Energy density, safety, and simple and environmentally friendly preparation methods are very significant aspects in the realization of a compact supercapacitor. Herein we report the use of a supercritical CO2-assisted gel drying process (SC-CO2) for the preparation of porous electrodes containing dispersed graphene in a poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) binder membrane to sandwich in a new portable supercapacitor based on graphene oxide (GO). A GO loading of 60 wt.% was found to give the best combination of factors (porosity, wettability, mechanical and electrochemical properties). Cycling voltammetry and charge/discharge studies showed an excellent capacitance behaviour and stability in an ionic liquid electrolyte, suggesting SC-CO2 processing as a promising platform to produce highly bulky and porous films for supercapacitors. The supercapacitor device delivers a very high energy density of 79.2 Wh kg(-1) at a power density of 0.23 KW kg(-1) (current density 0.5 A g(-1), specific capacitance 36.2 F g(-1)) while that of steel remains at 50.3 Wh kg(-1) at a power density of 2.8 KW kg(-1) (current density 6 A g(-1), specific capacitance 23.5 F g(-1)).
Synthesis of 2,5-Disubstituted Furans from Sc(OTf)3 Catalyzed Reaction of Aryl Oxiranediesters with gamma-Hydroxyenones.[Pubmed:28332838]
J Org Chem. 2017 Apr 21;82(8):4415-4421.
A convenient synthesis of 2,5-disubstituted furan was developed by employing donor-acceptor oxiranes in a new reaction with gamma-hydroxyenones. Sc(OTf)3 was found to be the best catalyst, and 2,5-disubstituted furans are obtained in moderate to good yields under mild reaction conditions. The scope of the reaction is quite decent, allowing for the synthesis of disubstituted furans having aryl and heteroaromatic groups.
Effect of Severe Plastic Deformation on Structure and Properties of Al-Sc-Ta and Al-Sc-Ti Alloys.[Pubmed:28340530]
Nanoscale Res Lett. 2017 Dec;12(1):220.
The comparative analysis of the effect of monotonous and non-monotonous severe plastic deformations (SPD) on the structure and properties of aluminum alloys has been carried out. Conventional hydrostatic extrusion (HE) with a constant deformation direction and equal-channel angular hydroextrusion (ECAH) with an abrupt change in the deformation direction were chosen for the cases of monotonous and non-monotonous SPD, respectively. Model cast hypoeutectic Al-0.3%Sc alloys and hypereutectic Al-0.6%Sc alloys with Ta and Ti additives were chosen for studying. It was demonstrated that SPD of the alloys resulted in the segregation of the material into active and inactive zones which formed a banded structure. The active zones were shown to be bands of localized plastic deformation. The distance between zones was found to be independent of the accumulated strain degree and was in the range of 0.6-1 mum. Dynamic recrystallization in the active zones was observed using TEM. The dynamic recrystallization was accompanied by the formation of disclinations, deformation bands, low-angle, and high-angle boundaries, i.e., rotational deformation modes developed. The dynamic recrystallization was more intense during the non-monotonous deformation as compared with the monotonous one, which was confirmed by the reduction of texture degree in the materials after ECAH.
A reporter gene assay for high-throughput screening of G-protein-coupled receptors stably or transiently expressed in HEK293 EBNA cells grown in suspension culture.[Pubmed:10964415]
Anal Biochem. 2000 Sep 10;284(2):316-26.
We describe in detail a robust, sensitive, and versatile functional assay for G-protein-coupled receptors (GPCRs) expressed in human embryonic kidney (HEK) 293-EBNA (Epstein-Barr virus nuclear antigen) (designated 293E) cells. The ability to grow these cells in suspension, in conjunction with the use of the secreted form of the human placental alkaline phosphatase (SEAP) as the reporter enzyme transcriptionally regulated by 5-cyclic AMP (cAMP) response elements (CREs) (Chen et al., Anal. Biochem. 226, 349-354 (1995)), makes this CRE-SEAP assay potentially attractive for high-throughput screening (HTS). A 293E clonal cell line, stably transfected with the CRE-SEAP plasmid, was initially characterized with compounds known to activate intracellular signal transduction pathways similar to those activated by GPCRs. Forskolin and cAMP analogues were potent at inducing SEAP expression but calcium ionophores (A23187 and ionomycin) were without effect. The forskolin response was also potentiated by the protein kinase C activator phorbol myristate acetate as well as the phosphodiesterase inhibitor isobutylmethylxanthine. Previously established cell lines expressing the G(alphas)-coupled DP or the G(alphaq)-coupled-EP(1) prostanoid receptors were stably transfected with the reporter gene construct and clones were selected based on their ability to secrete SEAP upon agonist challenge. Pharmacological characterization of the DP and EP(1) receptors displayed a similar rank order of potency for several known prostanoids and related compounds to that previously reported using classical binding assays or other functional assays. The CRE-SEAP assay was also used to characterize the EP(1) receptor antagonists SC-51322, SC-51089, and AH6809. In summary, we have established a reporter gene assay for GPCRs that couple to both G(alphas) and G(alphaq) and is amenable to HTS of both agonists and antagonists.