α-Conotoxin PIASelective antagonist of α6-containing nicotinic receptors CAS# 669050-68-4 |
2D Structure
- Dihydroberberine
Catalog No.:BCN2573
CAS No.:483-15-8
- Pectolinarigenin
Catalog No.:BCN5813
CAS No.:520-12-7
- Carnosol
Catalog No.:BCN1055
CAS No.:5957-80-2
- Hypaconine
Catalog No.:BCN8640
CAS No.:63238-68-6
Quality Control & MSDS
3D structure
Package In Stock
Number of papers citing our products
Cas No. | 669050-68-4 | SDF | Download SDF |
PubChem ID | 90488800 | Appearance | Powder |
Formula | C79H125N27O25S4 | M.Wt | 1981.3 |
Type of Compound | N/A | Storage | Desiccate at -20°C |
Solubility | Soluble to 2 mg/ml in water | ||
Sequence | RDPCCSNPVCTVHNPQIC (Modifications: Cys-18 - C-terminal amide, Disulfide bridge between 4 - 10, 5 - 18) | ||
Chemical Name | (3S)-3-[[(2S)-2-amino-5-carbamimidamidopentanoyl]amino]-4-[(2S)-2-[[(1R,6R,12S,15S,21S,24S,27S,33R,36S,39S,45S,48S,53R)-21,45-bis(2-amino-2-oxoethyl)-12-(3-amino-3-oxopropyl)-9-[(2S)-butan-2-yl]-6-carbamoyl-30-[(1R)-1-hydroxyethyl]-48-(hydroxymethyl)-24-(1H-imidazol-4-ylmethyl)-8,11,14,20,23,26,29,32,35,38,44,47,50,52-tetradecaoxo-27,36-di(propan-2-yl)-3,4,55,56-tetrathia-7,10,13,19,22,25,28,31,34,37,43,46,49,51-tetradecazatetracyclo[31.17.7.015,19.039,43]heptapentacontan-53-yl]carbamoyl]pyrrolidin-1-yl]-4-oxobutanoic acid | ||
SMILES | CCC(C)C1C(=O)NC(CSSCC2C(=O)NC(C(=O)NC(C(=O)N3CCCC3C(=O)NC(C(=O)NC(CSSCC(C(=O)N2)NC(=O)C4CCCN4C(=O)C(CC(=O)O)NC(=O)C(CCCNC(=N)N)N)C(=O)NC(C(=O)NC(C(=O)NC(C(=O)NC(C(=O)N5CCCC5C(=O)NC(C(=O)N1)CCC(=O)N)CC(=O)N)CC6=CNC=N6)C(C)C)C(C)O)C(C)C)CC(=O)N)CO)C(=O)N | ||
Standard InChIKey | WINQUAHGULGZED-WAIIABLISA-N | ||
Standard InChI | InChI=1S/C79H125N27O25S4/c1-8-36(6)59-74(127)96-46(61(84)114)29-132-133-30-47-66(119)95-45(28-107)65(118)94-43(25-55(83)111)77(130)106-22-12-16-52(106)71(124)100-57(34(2)3)73(126)99-49(32-135-134-31-48(67(120)97-47)98-70(123)51-15-11-21-105(51)78(131)44(26-56(112)113)92-62(115)39(80)13-9-19-88-79(85)86)68(121)103-60(37(7)108)75(128)101-58(35(4)5)72(125)91-41(23-38-27-87-33-89-38)64(117)93-42(24-54(82)110)76(129)104-20-10-14-50(104)69(122)90-40(63(116)102-59)17-18-53(81)109/h27,33-37,39-52,57-60,107-108H,8-26,28-32,80H2,1-7H3,(H2,81,109)(H2,82,110)(H2,83,111)(H2,84,114)(H,87,89)(H,90,122)(H,91,125)(H,92,115)(H,93,117)(H,94,118)(H,95,119)(H,96,127)(H,97,120)(H,98,123)(H,99,126)(H,100,124)(H,101,128)(H,102,116)(H,103,121)(H,112,113)(H4,85,86,88)/t36-,37+,39-,40-,41-,42-,43-,44-,45-,46-,47-,48-,49-,50-,51-,52-,57-,58-,59?,60?/m0/s1 | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
Description | Selective antagonist of α6-containing nicotinic receptors that discriminates between the closely related α6 and α3 subunits (IC50 values are 0.95 and 74.2 nM for rat α6/α3β2β3 and α3β2 receptors respectively). |
α-Conotoxin PIA Dilution Calculator
α-Conotoxin PIA Molarity Calculator
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
- 1,2-O-Isopropylidene-beta-D-fructopyranose
Catalog No.:BCN1383
CAS No.:66900-93-4
- Talniflumate
Catalog No.:BCC7391
CAS No.:66898-62-2
- H-D-Leu-OBzl.HCl
Catalog No.:BCC2682
CAS No.:66866-69-1
- Halobetasol Propionate
Catalog No.:BCC4664
CAS No.:66852-54-8
- LDN 57444
Catalog No.:BCC2087
CAS No.:668467-91-2
- Linagliptin (BI-1356)
Catalog No.:BCC2110
CAS No.:668270-12-0
- Magnoflorine chloride
Catalog No.:BCN2405
CAS No.:6681-18-1
- Jatrorrhizine chloride
Catalog No.:BCN4956
CAS No.:6681-15-8
- Hernandezine
Catalog No.:BCN7793
CAS No.:6681-13-6
- (+/-)-Forbesione
Catalog No.:BCN6423
CAS No.:667914-50-3
- Syringaresinol-di-O-glucoside
Catalog No.:BCN2600
CAS No.:66791-77-3
- Impurity B of Calcitriol
Catalog No.:BCC1645
CAS No.:66791-71-7
- Beta-Belladonnine
Catalog No.:BCN1893
CAS No.:6696-63-5
- Tianeptine
Catalog No.:BCC1999
CAS No.:66981-73-5
- Thiamine hydrochloride
Catalog No.:BCN2225
CAS No.:67-03-8
- EGTA
Catalog No.:BCC7491
CAS No.:67-42-5
- Furazolidone
Catalog No.:BCC8988
CAS No.:67-45-8
- 5-Hydroxymethylfurfural
Catalog No.:BCN4226
CAS No.:67-47-0
- Fluocinolone Acetonide
Catalog No.:BCC4906
CAS No.:67-73-2
- Dicyclomine HCl
Catalog No.:BCC3762
CAS No.:67-92-5
- Vitamin D3
Catalog No.:BCN2186
CAS No.:67-97-0
- Gliotoxin
Catalog No.:BCN3894
CAS No.:67-99-2
- Anthriscusin
Catalog No.:BCN3533
CAS No.:67008-16-6
- Methyl isovanillate
Catalog No.:BCN7960
CAS No.:6702-50-7
Solution structure of alpha-conotoxin PIA, a novel antagonist of alpha6 subunit containing nicotinic acetylcholine receptors.[Pubmed:16289101]
Biochem Biophys Res Commun. 2005 Dec 30;338(4):1990-7.
alpha-Conotoxin PIA is a novel nicotinic acetylcholine receptor (nAChR) antagonist isolated from Conus purpurascens that targets nAChR subtypes containing alpha6 and alpha3 subunits. alpha-conotoxin PIA displays 75-fold higher affinity for rat alpha6/alpha3beta2beta3 nAChRs than for rat alpha3beta2 nAChRs. We have determined the three-dimensional structure of alpha-conotoxin PIA by nuclear magnetic resonance spectroscopy. The alpha-conotoxin PIA has an "omega-shaped" overall topology as other alpha4/7 subfamily conotoxins. Yet, unlike other neuronally targeted alpha4/7-conotoxins, its N-terminal tail Arg1-Asp2-Pro3 protrudes out of its main molecular body because Asp2-Pro3-Cys4-Cys5 forms a stable type I beta-turn. In addition, a kink introduced by Pro15 in the second loop of this toxin provides a distinct steric and electrostatic environment from those in alpha-conotoxins MII and GIC. By comparing the structure of alpha-conotoxin PIA with other functionally related alpha-conotoxins we suggest structural features in alpha-conotoxin PIA that may be associated with its unique receptor recognition profile.
Alpha-conotoxin PIA is selective for alpha6 subunit-containing nicotinic acetylcholine receptors.[Pubmed:13679412]
J Neurosci. 2003 Sep 17;23(24):8445-52.
Until now, there have been no antagonists to discriminate between heteromeric nicotinic acetylcholine receptors (nAChRs) containing the very closely related alpha6 and alpha3 subunits. nAChRs containing alpha3, alpha4, or alpha6 subunits in combination with beta2, occasionally beta4, and sometimes beta3 or alpha5 subunits, are thought to play important roles in cognitive function, pain perception, and the reinforcing properties of nicotine. We cloned a novel gene from the predatory marine snail Conus purpurascens. The predicted peptide, alpha-conotoxin PIA, potently blocks the chimeric alpha6/alpha3beta2beta3 subunit combination as expressed in oocytes but neither the muscle nor the major neuronal nAChR alpha4beta2. Additionally, this toxin is the first described ligand to discriminate between nAChRs containing alpha6 and alpha3 subunits. Exploiting the unusual intron conservation of conotoxin genes may represent a more general approach for defining conotoxin ligand scaffolds to discriminate among closely related receptor populations.
Effect of novel alpha-conotoxins on nicotine-stimulated [3H]dopamine release from rat striatal synaptosomes.[Pubmed:15316087]
J Pharmacol Exp Ther. 2005 Jan;312(1):231-7.
Nicotine's action on the midbrain dopaminergic neurons is mediated by nicotinic acetylcholine receptors (nAChRs) that are present on the cell bodies and the terminals of these neurons. Previously, it was suggested that one of the nAChR subtypes located on striatal dopaminergic terminals may be an alpha3beta2 subtype, based on partial inhibition of nicotine-stimulated [(3)H]dopamine release by alpha-conotoxin MII, a potent inhibitor of heterologously expressed alpha3beta2 nAChRs. More recent studies indicated that alpha-conotoxin MII also potently blocks alpha6-containing nAChRs. In the present study, we have examined the nAChR subtype(s) modulating [(3)H]dopamine release from striatal terminals by using novel alpha-conotoxins that have 37- to 78-fold higher selectivity for alpha6-versus alpha3-containing nAChRs. All of the peptides partially (20-35%) inhibit nicotine-stimulated [(3)H]dopamine release with IC(50) values consistent with those obtained with heterologously expressed rat alpha6-containing nicotinic acetylcholine receptors. These results, together with previous studies by others, further support the idea that alpha6-containing nicotinic receptors modulate nicotine-stimulated dopamine release from rat striatal synaptosomes.