ω-Agatoxin TKCa2+ channel blocker (P/Q-type) CAS# 158484-42-5 |
2D Structure
- Dihydroberberine
Catalog No.:BCN2573
CAS No.:483-15-8
- Sesamolin
Catalog No.:BCN1289
CAS No.:526-07-8
- Carnosol
Catalog No.:BCN1055
CAS No.:5957-80-2
- Harpagide
Catalog No.:BCN4996
CAS No.:6926-08-5
- Levistilide A
Catalog No.:BCN1197
CAS No.:88182-33-6
Quality Control & MSDS
3D structure
Package In Stock
Number of papers citing our products
Cas No. | 158484-42-5 | SDF | Download SDF |
PubChem ID | 90488781 | Appearance | Powder |
Formula | C215H337N65O70S10 | M.Wt | 5273.02 |
Type of Compound | N/A | Storage | Desiccate at -20°C |
Synonyms | Agatoxin IVB | ||
Solubility | Soluble in sterile water | ||
Sequence | EDNCIAEDYGKCTWGGTKCCRGRPCRCSMI (Modifications: Disulfide bridge between 4 - 20, 12 - 25, 19 - 36, 27 - 34) | ||
Chemical Name | 4-amino-5-[[1-[[4-amino-1-[[42,63-bis(4-aminobutyl)-25-(2-amino-2-oxoethyl)-16,81-di(butan-2-yl)-34-[[1-[2-[[5-carbamimidamido-1-[[1-[[1-[[1-[[4-carboxy-1-[[2-[[1-[[1-[[1-(1-carboxyethylamino)-1-oxo-3-phenylpropan-2-yl]amino]-3-hydroxy-1-oxopropan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-2-oxoethyl]amino]-1-oxobutan-2-yl]amino]-4-methylsulfanyl-1-oxobutan-2-yl]amino]-3-methyl-1-oxopentan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-1-oxopentan-2-yl]carbamoyl]pyrrolidin-1-yl]-3-hydroxy-1-oxobutan-2-yl]carbamoyl]-4,92,98-tris(3-carbamimidamidopropyl)-31,75-bis(2-carboxyethyl)-72-(carboxymethyl)-22,45,57-tris(1-hydroxyethyl)-10-(hydroxymethyl)-69-[(4-hydroxyphenyl)methyl]-54-(1H-indol-3-ylmethyl)-78-methyl-13-(2-methylsulfanylethyl)-2,5,5a,8,11,12a,14,17,20,23,26,29,32,41,44,47,50,53,56,59,62,65,68,71,74,77,80,83,90,93,96,99-dotriacontaoxo-8a,9a,14a,15a,36,37,86,87-octathia-a,3,6,6a,9,11a,12,15,18,21,24,27,30,33,40,43,46,49,52,55,58,61,64,67,70,73,76,79,82,91,94,97-dotriacontazapentacyclo[58.46.4.47,28.239,89.0100,104]hexadecahectan-84-yl]amino]-1,4-dioxobutan-2-yl]amino]-3-carboxy-1-oxopropan-2-yl]amino]-5-oxopentanoic acid | ||
SMILES | CCC(C)C1C(=O)NC(C(=O)NC(C(=O)NC(C(=O)NC(C(=O)NCC(=O)NC(C(=O)NC2CSSCC3C(=O)NC(C(=O)NC4CSSCC(C(=O)NC(C(=O)NC(CSSCC(C(=O)NC(CSSCC(C(=O)N1)NC(=O)C(CC(=O)N)NC(=O)C(CC(=O)O)NC(=O)C(CCC(=O)O)N)C(=O)NC(C(=O)NCC(=O)NC(C(=O)N5CCCC5C(=O)N3)CCCNC(=N)N)CCCNC(=N)N)NC(=O)C(NC(=O)C(NC(=O)CNC(=O)CNC(=O)C(NC(=O)C(NC2=O)C(C)O)CC6=CNC7=CC=CC=C76)C(C)O)CCCCN)C(=O)NC(C(C)O)C(=O)N8CCCC8C(=O)NC(CCCNC(=N)N)C(=O)NC(CC(C)C)C(=O)NC(C(C)CC)C(=O)NC(CCSC)C(=O)NC(CCC(=O)O)C(=O)NCC(=O)NC(CC(C)C)C(=O)NC(CO)C(=O)NC(CC9=CC=CC=C9)C(=O)NC(C)C(=O)O)CCC(=O)O)NC(=O)C(NC(=O)C(NC(=O)CNC(=O)C(NC(=O)C(NC(=O)C(NC4=O)CO)CCSC)C(C)CC)C(C)O)CC(=O)N)CCCNC(=N)N)CCCCN)CC1=CC=C(C=C1)O)CC(=O)O)CCC(=O)O)C | ||
Standard InChIKey | MBXCGHHUBOKUGG-UHFFFAOYSA-N | ||
Standard InChI | InChI=1S/C215H337N65O70S10/c1-19-101(8)163-203(341)239-88-156(295)273-167(107(14)284)207(345)261-134(79-150(220)289)187(325)268-139-91-353-355-93-141(196(334)263-137(89-281)191(329)250-126(62-72-352-18)183(321)274-163)264-179(317)120(44-32-66-230-213(223)224)247-195(333)143-95-357-359-97-145-199(337)277-168(108(15)285)208(346)260-132(77-112-82-233-116-40-26-25-39-114(112)116)175(313)235-83-151(290)234-84-155(294)272-166(106(13)283)206(344)252-119(42-28-30-64-217)178(316)265-142(94-356-360-98-146(267-181(319)124(249-194(139)332)56-60-160(302)303)200(338)278-169(109(16)286)210(348)280-70-36-48-148(280)201(339)251-121(45-33-67-231-214(225)226)177(315)255-129(74-100(6)7)190(328)275-165(103(10)21-3)205(343)253-125(61-71-351-17)182(320)248-122(54-58-158(298)299)173(311)237-87-154(293)244-128(73-99(4)5)185(323)262-138(90-282)192(330)257-131(75-110-37-23-22-24-38-110)184(322)241-105(12)211(349)350)197(335)270-140(193(331)246-117(43-31-65-229-212(221)222)172(310)236-86-153(292)243-127(46-34-68-232-215(227)228)209(347)279-69-35-47-147(279)202(340)271-143)92-354-358-96-144(269-186(324)133(78-149(219)288)258-188(326)135(80-161(304)305)254-171(309)115(218)53-57-157(296)297)198(336)276-164(102(9)20-2)204(342)240-104(11)170(308)245-123(55-59-159(300)301)180(318)259-136(81-162(306)307)189(327)256-130(76-111-49-51-113(287)52-50-111)174(312)238-85-152(291)242-118(176(314)266-145)41-27-29-63-216/h22-26,37-40,49-52,82,99-109,115,117-148,163-169,233,281-287H,19-21,27-36,41-48,53-81,83-98,216-218H2,1-18H3,(H2,219,288)(H2,220,289)(H,234,290)(H,235,313)(H,236,310)(H,237,311)(H,238,312)(H,239,341)(H,240,342)(H,241,322)(H,242,291)(H,243,292)(H,244,293)(H,245,308)(H,246,331)(H,247,333)(H,248,320)(H,249,332)(H,250,329)(H,251,339)(H,252,344)(H,253,343)(H,254,309)(H,255,315)(H,256,327)(H,257,330)(H,258,326)(H,259,318)(H,260,346)(H,261,345)(H,262,323)(H,263,334)(H,264,317)(H,265,316)(H,266,314)(H,267,319)(H,268,325)(H,269,324)(H,270,335)(H,271,340)(H,272,294)(H,273,295)(H,274,321)(H,275,328)(H,276,336)(H,277,337)(H,278,338)(H,296,297)(H,298,299)(H,300,301)(H,302,303)(H,304,305)(H,306,307)(H,349,350)(H4,221,222,229)(H4,223,224,230)(H4,225,226,231)(H4,227,228,232) | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
Description | Selective blocker of CaV2.1 P/Q-type calcium channels. |
ω-Agatoxin TK Dilution Calculator
ω-Agatoxin TK Molarity Calculator
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
- BMS-983970
Catalog No.:BCC5509
CAS No.:1584713-87-0
- PSI
Catalog No.:BCC1124
CAS No.:158442-41-2
- Demethyl calyciphylline A
Catalog No.:BCN7040
CAS No.:1584236-34-9
- Pyraclonil
Catalog No.:BCC8073
CAS No.:158353-15-2
- Methyl 3-(4-methoxyphenyl)propanoate
Catalog No.:BCN4051
CAS No.:15823-04-8
- Naringenin-7-O-glucuronide
Catalog No.:BCC8215
CAS No.:158196-34-0
- Fmoc-Ser(HPO3Bzl)-OH
Catalog No.:BCC3543
CAS No.:158171-14-3
- 21-O-Tigloylgymnemagenin
Catalog No.:BCN7854
CAS No.:1581276-63-2
- 5-Hydroxy-6,7,8-trimethoxycoumarin
Catalog No.:BCN7470
CAS No.:1581248-32-9
- para-iodoHoechst 33258
Catalog No.:BCC1838
CAS No.:158013-43-5
- meta-iodoHoechst 33258
Catalog No.:BCC1739
CAS No.:158013-42-4
- ortho-iodoHoechst 33258
Catalog No.:BCC1824
CAS No.:158013-41-3
- Catalpalactone
Catalog No.:BCN1708
CAS No.:1585-68-8
- Cnidioside B methyl ester
Catalog No.:BCN1707
CAS No.:158500-59-5
- Eclalbasaponin I
Catalog No.:BCN8244
CAS No.:158511-59-2
- Ombuin 3-glucoside
Catalog No.:BCN4055
CAS No.:158642-42-3
- Rimonabant hydrochloride
Catalog No.:BCC1898
CAS No.:158681-13-1
- Dihydrexidine hydrochloride
Catalog No.:BCC5681
CAS No.:158704-02-0
- 2-Naphthyl N-benzoylphenylalaninate
Catalog No.:BCC8583
CAS No.:15873-25-3
- Aescin IIA
Catalog No.:BCN6551
CAS No.:158732-55-9
- Salvianolic acid F
Catalog No.:BCN2924
CAS No.:158732-59-3
- Escin IIB
Catalog No.:BCN8127
CAS No.:158800-83-0
- GR 159897
Catalog No.:BCC7001
CAS No.:158848-32-9
- 3-O-(2'E ,4'Z-decadienoyl)-20-O-acetylingenol
Catalog No.:BCN1550
CAS No.:158850-76-1
High-affinity inhibition of glutamate release from corticostriatal synapses by omega-agatoxin TK.[Pubmed:11711028]
Eur J Pharmacol. 2001 Nov 2;430(2-3):167-73.
To know which Ca(2+) channel type is the most important for neurotransmitter release at corticostriatal synapses of the rat, we tested Ca(2+) channel antagonists on the paired pulse ratio. omega-Agatoxin TK was the most effective Ca(2+) channel antagonist (IC(50)=127 nM; maximal effect=211% (with >1 microM) and Hill coefficient=1.2), suggesting a single site of action and a Q-type channel profile. Corresponding parameters for Cd(2+) were 13 microM, 178% and 1.2. The block of L-type Ca(2+) channels had little impact on transmission, but we also tested facilitation of L-type Ca(2+) channels. The L-type Ca(2+) channel agonist, s-(-)-1,4 dihydro-2,6-dimethyl-5-nitro-4-[2-(trifluoromethyl)phenyl]-3-pyridine carboxylic acid methyl ester (Bay K 8644 (5 microM)), produced a 45% reduction of the paired pulse ratio, suggesting that even if L-type channels do not participate in the release process, they may participate in its modulation.
Omega-agatoxin-TK is a useful tool to study P-type Ca2+ channel-mediated changes in internal Ca2+ and glutamate release in depolarised brain nerve terminals.[Pubmed:15567515]
Neurochem Int. 2005 Jan;46(1):53-60.
The present study shows that omega-agatoxin-TK, a toxin of the venom of Agelenopsis aperta, which is 10 times more concentrated than the P/Q type Ca(2+) channel blocker, omega-agatoxin-IVA in the venom, inhibits the high K(+) depolarisation-induced rise in internal Ca(2+) (Ca(i), as determined with fura-2) dose dependently in cerebral (striatal and hippocampal) isolated nerve endings, with calculated IC(50)'s of about 60nM. The maximal inhibition exerted by omega-agatoxin-TK in striatal synaptosomes (61 +/- 11%) is 10% larger than in hippocampal synaptosomes, suggesting a larger population of omega-agatoxin-TK-sensitive Ca(2+) channels in striatal than in hippocampal nerve endings. The N-type Ca(2+) channel blocker, omega-conotoxin-GVIA (1muM), inhibits part of the omega-agatoxin-TK-insensitive rise in Ca(i) induced by high K(+). In contrast to the inhibition exerted by omega-agatoxin-TK on the Ca(i) response to high K(+), omega-agatoxin-TK failed to inhibit the tetrodotoxin-sensitive elevations in Ca(i) and in internal Na(+) (Na(i), as determined with SBFI) induced by veratridine, indicating that the Ca(2+) influx activated by veratridine does not involve omega-agatoxin-TK-sensitive channels. High K(+) does not increase Na(i). In [(3)H]Glu preloaded hippocampal synaptosomes super-fused with low Na(+) Krebs Ringer HEPES (a condition that guarantees the elimination of neurotransmitter transporters-mediated release), the release of [(3)H]Glu induced by high K(+) is absolutely dependent on the entrance of external Ca(2+). This exocytotic release of [(3)H]Glu attained in the absence of a chemical Na(+) gradient is inhibited with the same potency and efficacy by omega-agatoxin-TK and by omega-agatoxin-IVA, which is known to differ from omega-agatoxin-TK in its amino terminal moiety. These results indicate that omega-agatoxin-TK represents a good pharmacological tool to study P/Q type Ca(2+) channel-mediated responses in cerebral nerve endings.
Two types of calcium channels sensitive to omega-agatoxin- TK in cultured rat hippocampal neurones.[Pubmed:8527741]
Neuroreport. 1995 Aug 21;6(12):1684-8.
We characterized the electrophysiological properties of calcium channels in cultured rat hippocampal neurones using omega-agatoxin-TK (omega-Aga-TK) and compared them with those of the P-type channel and the BI (alpha 1A) channel which resembles the Q-type channel. Two types of omega-Aga-TK-sensitive calcium channels were detected in hippocampal neurones. The first type showed slow inactivation, high sensitivity to omega-Aga-TK and low reversibility from omega-Aga-TK-induced block, resembling the P-type channel. The second type showed fast inactivation, low sensitivity to omega-Aga-TK and high reversibility from omega-Aga-TK-induced block. These results suggest that the second type of calcium channel (Q-type-like) plays a prominent role in the hippocampal synaptic transmission.
A novel type of calcium channel sensitive to omega-agatoxin-TK in cultured rat cerebral cortical neurons.[Pubmed:9187336]
Brain Res. 1997 May 9;756(1-2):225-30.
We characterized the electrophysiological properties of calcium channels in cultured rat cerebral cortical neurons using omega-agatoxin-TK (omega-Aga-TK) by a patch-clamp technique. Two types of slowly inactivating calcium channels sensitive to omega-Aga-TK were detected. The first type showed high sensitivity to omega-Aga-TK and low recovery from the omega-Aga-TK-induced blockade during washout, corresponding to the P-type channel. The second type showed low sensitivity to omega-Aga-TK and high recovery, resembling the Q-type channel, although it was distinct from the Q-type in terms of slower inactivation kinetics. We designate this channel as Q(L)-type (long-lasting Q channel). The omega-Aga-TK-sensitive calcium channels involved in the glutamatergic synaptic transmission were also divided into two types based on the sensitivity to omega-Aga-TK and reversibility of omega-Aga-TK-induced blockade. We conclude that the Q(L)-type is a novel type of channel, and that both P-type and Q(L)-type channels play a significant role in the cerebral cortical synaptic transmission.