Adipic dihydrazideCAS# 1071-93-8 |
Quality Control & MSDS
Number of papers citing our products
Chemical structure
3D structure
Cas No. | 1071-93-8 | SDF | Download SDF |
PubChem ID | 66117 | Appearance | Powder |
Formula | C6H14N4O2 | M.Wt | 174 |
Type of Compound | N/A | Storage | Desiccate at -20°C |
Solubility | Soluble in Chloroform,Dichloromethane,Ethyl Acetate,DMSO,Acetone,etc. | ||
Chemical Name | hexanedihydrazide | ||
SMILES | C(CCC(=O)NN)CC(=O)NN | ||
Standard InChIKey | IBVAQQYNSHJXBV-UHFFFAOYSA-N | ||
Standard InChI | InChI=1S/C6H14N4O2/c7-9-5(11)3-1-2-4-6(12)10-8/h1-4,7-8H2,(H,9,11)(H,10,12) | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
Adipic dihydrazide Dilution Calculator
Adipic dihydrazide Molarity Calculator
1 mg | 5 mg | 10 mg | 20 mg | 25 mg | |
1 mM | 5.7471 mL | 28.7356 mL | 57.4713 mL | 114.9425 mL | 143.6782 mL |
5 mM | 1.1494 mL | 5.7471 mL | 11.4943 mL | 22.9885 mL | 28.7356 mL |
10 mM | 0.5747 mL | 2.8736 mL | 5.7471 mL | 11.4943 mL | 14.3678 mL |
50 mM | 0.1149 mL | 0.5747 mL | 1.1494 mL | 2.2989 mL | 2.8736 mL |
100 mM | 0.0575 mL | 0.2874 mL | 0.5747 mL | 1.1494 mL | 1.4368 mL |
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations. |
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
- Apo-12'-Lycopenal
Catalog No.:BCC8298
CAS No.:1071-52-9
- EIT hydrobromide
Catalog No.:BCC6824
CAS No.:1071-37-0
- O-Phosphorylethanolamine
Catalog No.:BCN1759
CAS No.:1071-23-4
- Amyloid Beta-Peptide (12-28) (human)
Catalog No.:BCC1044
CAS No.:107015-83-8
- Granisetron HCl
Catalog No.:BCC1060
CAS No.:107007-99-8
- Sarcosine
Catalog No.:BCN2744
CAS No.:107-97-1
- H-ß-Ala-OH
Catalog No.:BCC2851
CAS No.:107-95-9
- 3-Methyl-1-butylamine
Catalog No.:BCN1810
CAS No.:107-85-7
- N-Methyltaurine
Catalog No.:BCN1751
CAS No.:107-68-6
- Betaine
Catalog No.:BCN6303
CAS No.:107-43-7
- Taurine
Catalog No.:BCN1750
CAS No.:107-35-7
- Propylamine
Catalog No.:BCN1814
CAS No.:107-10-8
- 8,9-Dihydroxy-10-isobutyryloxythymol
Catalog No.:BCN7974
CAS No.:107109-97-7
- Perindopril Erbumine
Catalog No.:BCC3586
CAS No.:107133-36-8
- Pyrocincholic acid methyl ester
Catalog No.:BCN5873
CAS No.:107160-24-7
- MAC13243
Catalog No.:BCC1727
CAS No.:1071638-38-4
- Deoxyflindissone
Catalog No.:BCN7268
CAS No.:107176-31-8
- AT-406 (SM-406)
Catalog No.:BCC1283
CAS No.:1071992-99-8
- Epigoitrin
Catalog No.:BCN6278
CAS No.:1072-93-1
- Cevimeline
Catalog No.:BCC1470
CAS No.:107233-08-9
- 2-[(1S)-2-Formyl-1,3,3-trimethylcyclohexyl]-4-hydroxy-5-propan-2-ylbenzaldehyde
Catalog No.:BCN3584
CAS No.:1072444-55-3
- NPPB
Catalog No.:BCC6711
CAS No.:107254-86-4
- Baogongteng C
Catalog No.:BCN1873
CAS No.:107259-50-7
- Carasinol D
Catalog No.:BCN8228
CAS No.:1072797-66-0
Strategy for constructing vascularized adipose units in poly(l-glutamic acid) hydrogel porous scaffold through inducing in-situ formation of ASCs spheroids.[Pubmed:28093366]
Acta Biomater. 2017 Mar 15;51:246-257.
Vascularization is of great importance to adipose tissue regeneration. Here we introduced a paradigm that using scaffold to induce ASC spheroids, so to promote vascularized adipose tissue regeneration. Poly (l-glutamic acid) (PLGA) was activated by EDC, followed by being cross-linked by Adipic dihydrazide (ADH) to form a homogeneous hydrogel. Lyophilization was then carried out to create porous structure. The PLGA hydrogel scaffold possessed a significant swollen hydrophilic network to weaken cell-scaffold adhesion but drive ASCs to aggregate to form spheroids. Increase of seeding cell density was proved to result in the increase of spheroid size, upregulating angiogenic genes (VEGF and FGF-2) expression by enhancing the hypoxia-induced paracrine secretion. Also, the adipogenic differentiation of ASCs was achieved in spheroids in vitro. Moreover, the in vivo vascularized adipose tissue regeneration was evaluated in the dorsum of nude mice. After 12weeks post-implantation, the significant angiogenesis was found in both adipogenic induced and non-induced engineered tissue. In adipogenic induced group, the clear ring-like morphology, the large vacuole in the middle of the cell and the Oil red O staining demonstrated adipose tissue formation. STATEMENT OF SIGNIFICANCE: Vascularization is of great importance to adipose tissue regeneration. Adipose derived stem cell (ASC) spheroids possessed not only the high efficiency of vascularization, but also the improved differentiation ability. Several research works have illustrated the advantage of ASC spheroids in vascularization. However, in adipose regeneration, ASC spheroid was rarely used. Even so, it is reasonable to believe that ASC spheroids hold a great promise in vascularized adipose tissue engineering. Thus in the present study, we introduced a method to create lots of ASC spheroids that acted as lots of individual adipogenesis and angiogenesis units inside of a porous hydrogel scaffold. Then, the scaffold carrying ASC spheroids was implanted subcutaneously in nude mice to preliminarily evaluate the adipose tissue generation and blood vessel formation.