PropylamineCAS# 107-10-8 |
Quality Control & MSDS
Number of papers citing our products
Chemical structure
3D structure
Cas No. | 107-10-8 | SDF | Download SDF |
PubChem ID | 7852 | Appearance | Oil |
Formula | C3H9N | M.Wt | 59.11 |
Type of Compound | Alkaloids | Storage | Desiccate at -20°C |
Solubility | Soluble in Chloroform,Dichloromethane,Ethyl Acetate,DMSO,Acetone,etc. | ||
Chemical Name | propan-1-amine | ||
SMILES | CCCN | ||
Standard InChIKey | WGYKZJWCGVVSQN-UHFFFAOYSA-N | ||
Standard InChI | InChI=1S/C3H9N/c1-2-3-4/h2-4H2,1H3 | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
Description | Propylamine is a natural product from grape. |
In vitro | Mechanism of activation of the prokaryotic channel ELIC by propylamine: a single-channel study.[Pubmed: 25548135]J Gen Physiol. 2015 Jan;145(1):23-45.
|
Propylamine Dilution Calculator
Propylamine Molarity Calculator
1 mg | 5 mg | 10 mg | 20 mg | 25 mg | |
1 mM | 16.9176 mL | 84.5881 mL | 169.1761 mL | 338.3522 mL | 422.9403 mL |
5 mM | 3.3835 mL | 16.9176 mL | 33.8352 mL | 67.6704 mL | 84.5881 mL |
10 mM | 1.6918 mL | 8.4588 mL | 16.9176 mL | 33.8352 mL | 42.294 mL |
50 mM | 0.3384 mL | 1.6918 mL | 3.3835 mL | 6.767 mL | 8.4588 mL |
100 mM | 0.1692 mL | 0.8459 mL | 1.6918 mL | 3.3835 mL | 4.2294 mL |
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations. |
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
- Boc-isoleucinol
Catalog No.:BCC3096
CAS No.:106946-74-1
- Adefovir
Catalog No.:BCC8808
CAS No.:106941-25-7
- Boc-D-Leucinol
Catalog No.:BCC2723
CAS No.:106930-51-2
- Valproic acid sodium salt (Sodium valproate)
Catalog No.:BCC2156
CAS No.:1069-66-5
- 5-Allyl-3-methoxy-6-methyl-7-(3,4,5-trimethoxyphenyl)bicyclo[3.2.1]oct-3-ene-2,8-dione
Catalog No.:BCN1632
CAS No.:106894-43-3
- BIBP 3226 trifluoroacetate
Catalog No.:BCC7456
CAS No.:1068148-47-9
- Diethyl Acetamidomalonate
Catalog No.:BCC2841
CAS No.:1068-90-2
- Otophylloside B
Catalog No.:BCN7267
CAS No.:106758-54-7
- 24-Deacetylalisol O
Catalog No.:BCN3365
CAS No.:1067510-31-9
- GYY 4137 morpholine salt
Catalog No.:BCC7739
CAS No.:106740-09-4
- Olprinone
Catalog No.:BCC1820
CAS No.:106730-54-5
- Boc-D-Lys-OH
Catalog No.:BCC3420
CAS No.:106719-44-2
- Taurine
Catalog No.:BCN1750
CAS No.:107-35-7
- Betaine
Catalog No.:BCN6303
CAS No.:107-43-7
- N-Methyltaurine
Catalog No.:BCN1751
CAS No.:107-68-6
- 3-Methyl-1-butylamine
Catalog No.:BCN1810
CAS No.:107-85-7
- H-ß-Ala-OH
Catalog No.:BCC2851
CAS No.:107-95-9
- Sarcosine
Catalog No.:BCN2744
CAS No.:107-97-1
- Granisetron HCl
Catalog No.:BCC1060
CAS No.:107007-99-8
- Amyloid Beta-Peptide (12-28) (human)
Catalog No.:BCC1044
CAS No.:107015-83-8
- O-Phosphorylethanolamine
Catalog No.:BCN1759
CAS No.:1071-23-4
- EIT hydrobromide
Catalog No.:BCC6824
CAS No.:1071-37-0
- Apo-12'-Lycopenal
Catalog No.:BCC8298
CAS No.:1071-52-9
- Adipic dihydrazide
Catalog No.:BCC8810
CAS No.:1071-93-8
Mechanism of activation of the prokaryotic channel ELIC by propylamine: a single-channel study.[Pubmed:25548135]
J Gen Physiol. 2015 Jan;145(1):23-45.
Prokaryotic channels, such as Erwinia chrysanthemi ligand-gated ion channel (ELIC) and Gloeobacter violaceus ligand-gated ion channel, give key structural information for the pentameric ligand-gated ion channel family, which includes nicotinic acetylcholine receptors. ELIC, a cationic channel from E. chrysanthemi, is particularly suitable for single-channel recording because of its high conductance. Here, we report on the kinetic properties of ELIC channels expressed in human embryonic kidney 293 cells. Single-channel currents elicited by the full agonist Propylamine (0.5-50 mM) in outside-out patches at -60 mV were analyzed by direct maximum likelihood fitting of kinetic schemes to the idealized data. Several mechanisms were tested, and their adequacy was judged by comparing the predictions of the best fit obtained with the observable features of the experimental data. These included open-/shut-time distributions and the time course of macroscopic Propylamine-activated currents elicited by fast theta-tube applications (50-600 ms, 1-50 mM, -100 mV). Related eukaryotic channels, such as glycine and nicotinic receptors, when fully liganded open with high efficacy to a single open state, reached via a preopening intermediate. The simplest adequate description of their activation, the "Flip" model, assumes a concerted transition to a single intermediate state at high agonist concentration. In contrast, ELIC open-time distributions at saturating Propylamine showed multiple components. Thus, more than one open state must be accessible to the fully liganded channel. The "Primed" model allows opening from multiple fully liganded intermediates. The best fits of this type of model showed that ELIC maximum open probability (99%) is reached when at least two and probably three molecules of agonist have bound to the channel. The overall efficacy with which the fully liganded channel opens was approximately 102 ( approximately 20 for alpha1beta glycine channels). The microscopic affinity for the agonist increased as the channel activated, from 7 mM for the resting state to 0.15 mM for the partially activated intermediate state.